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Microcontroller programmers are, by their nature, truly resourceful beings. They take a fi xed 
design and create fantastic new products by implementing the microcontroller in a very unique 
way. Constantly, they demand highly effi cient computing from the most frugal of system 
designs. The primary ingredient used to perform this alchemy is the tool chain environment, 
and it is for this reason that engineers from ARM’s own tool chain division joined forces 
with CPU designers to form a team that would rationalize, simplify, and improve upon the 
ARM7TDMI processor design. 

The result of this combination, the ARM Cortex-M3, represents an exciting development 
to the original ARM architecture. The device blends the best features from the 32-bit ARM 
architecture with the highly successful Thumb-2 instruction set design whilst adding several 
new capabilities. Despite these changes, the Cortex-M3 retains a simplifi ed programmer’s 
model that will be easily recognizable to all existing ARM afi cionados.

 —Wayne Lyons

Director of Embedded Solutions, ARM

Foreword
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xiv

This book is for both hardware and software engineers who are interested in the Cortex-M3 
processor from ARM. The Cortex-M3 Technical Reference Manual (TRM) and the ARMv7-M 
Architecture Application Level Reference Manual already provide lots of information on this 
new processor, but they are very detailed and can be challenging for new starters to read. 

This book is intended to be a lighter read for programmers, embedded product designers, 
System-on-a-Chip (SoC) engineers, electronics enthusiasts, academic researchers, and others 
with some experience of microcontrollers or microprocessors who are investigating the 
Cortex-M3 processor. The text includes an introduction to the new architecture, an instruction 
set summary, examples of some instructions, information on hardware features, and an 
overview of the processor’s advanced debug system. It also provides application examples, 
including basic steps in software development for the Cortex-M3 processor using ARM tools 
as well as the GNU tool chain. This book is also targeted to those engineers who are familiar 
with the ARM7TDMI processor and who are migrating to the Cortex-M3 processor, because 
it covers the differences between the processors, and the porting of application software from 
the ARM7TDMI to the Cortex-M3. 

Preface
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xviiixviii

Various typographical conventions have been used in this book, as follows:

• Normal assembly program codes:

      MOV   R0, R1  ; Move data from Register R1 to Register R0

• Assembly code in generalized syntax; items inside � � must be replaced by read 
register names:

      MRS  <reg>, <special_reg>  ; 

• C program codes:

      for (i=0;i<3;i++) { func1(); }

• Pseudo code:

      if (a > b) { ...

• Values:

  1. 4'hC , 0x123 are both hexadecimal values

  2. #3 indicates item number 3 (e.g., IRQ #3 means IRQ number 3)

  3. #immed_12 refers to 12-bit immediate data

  4. Register bits
     Typically used to illustrate a part of a value based on bit position. For example, 

bit[15:12] means bit number 15 down to 12.

• Register access types:

  1. R is Read only

  2. W is Write only

  3. R/W is Read or Write accessible

  4. R/Wc is Readable and clear by a Write access

Conventions
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Introduction
CHAPTER 1

In This Chapter:

● What Is the ARM Cortex-M3 Processor?
● Background of ARM and ARM Architecture
● Instruction Set Development
● The Thumb-2 Instruction Set Architecture (ISA)
● Cortex-M3 Processor Applications
● Organization of This Book
● Further Readings

What Is the ARM Cortex-M3 Processor?

The microcontroller market is vast, with over 20 billion devices per year estimated to 
be shipped in 2010. A bewildering array of vendors, devices, and architectures are 
competing in this market. The requirement for higher-performance microcontrollers 
has been driven globally by the industry’s changing needs; for example, microcontrollers 
are required to handle more work without increasing a product’s frequency or power. 
In addition, microcontrollers are becoming increasingly connected, whether by Universal 
Serial Bus (USB), Ethernet, or Wireless Radio, and hence the processing needed to 
support these communications channels and advanced peripherals is growing. Similarly, 
general application complexity is on the increase, driven by more sophisticated user 
interfaces, multimedia requirements, system speed, and convergence of functionalities.

The ARM Cortex-M3 processor, the fi rst of the Cortex generation of processors released 
by ARM in 2006, was primarily designed to target the 32-bit microcontroller market. The 
Cortex-M3 processor provides excellent performance at low gate count and comes with many 
new features previously available only in high-end processors. The Cortex-M3 addresses the 
requirements for the 32-bit embedded processor market in the following ways:

• Greater performance effi ciency, allowing more work to be done without increasing the 
frequency or power requirements
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• Low power consumption, enabling longer battery life, especially critical in portable 
products including wireless networking applications

• Enhanced determinism, guaranteeing that critical tasks and interrupts are serviced as 
quickly as possible but in a known number of cycles

• Improved code density, ensuring that code fi ts in even the smallest memory footprints

• Ease of use, providing easier programmability and debugging for the growing number 
of 8-bit and 16-bit users migrating to 32-bit

• Lower-cost solutions, reducing 32-bit-based system costs close to those of legacy 8-bit 
and 16-bit devices and enabling low-end, 32-bit microcontrollers to be priced at less 
than US$1 for the fi rst time

• Wide choice of development tools, from low-cost or free compilers to full-featured 
development suites from many development tool vendors

Microcontrollers based on the Cortex-M3 processor already compete head-on with devices 
based on a wide variety of other architectures. Designers are increasingly looking at reducing 
the system cost, as opposed to the traditional device cost. As such, organizations are 
implementing device aggregation, whereby a single, more powerful device can potentially 
replace three or four traditional 8-bit devices.

Other cost savings can be achieved by improving the amount of code reuse across all systems. 
Since Cortex-M3 processor-based microcontrollers can be easily programmed using the C 
language and are based on a well-established architecture, application code can be ported and 
reused easily, reducing development time and testing costs.

It is worthwhile highlighting that the Cortex-M3 processor is not the fi rst ARM processor 
to be used to create generic microcontrollers. The venerable ARM7 processor has been very 
successful in this market, with partners such as NXP (Philips), Texas Instruments, Atmel, 
OKI, and many other vendors delivering robust 32-bit Microcontroller Units (MCUs). The 
ARM7 is the most widely used 32-bit embedded processor in history, with over 1 billion 
processors produced each year in a huge variety of electronic products, from mobile phones 
to cars.

The Cortex-M3 processor builds on the success of the ARM7 processor to deliver devices 
that are signifi cantly easier to program and debug and yet deliver a higher processing 
capability. Additionally, the Cortex-M3 processor introduces a number of features and 
technologies that meet the specifi c requirements of the microcontroller applications, such as 
nonmaskable interrupts for critical tasks, highly deterministic nested vector interrupts, atomic 
bit manipulation, and an optional memory protection unit. These factors make the Cortex-M3 
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processor attractive to existing ARM processor users as well as many new users considering 
use of 32-bit MCUs in their products.

The Cortex-M3 Processor vs Cortex-M3-Based MCUs

The Cortex-M3 processor is the central processing unit (CPU) of a microcontroller 
chip. In addition, a number of other components are required for the whole Cortex-
M3 processor-based microcontroller. After chip manufacturers license the Cortex-
M3 processor, they can put the Cortex-M3 processor in their silicon designs, adding 
memory, peripherals, input/output (I/O), and other features. Cortex-M3 processor-
based chips from different manufacturers will have different memory sizes, types, 
peripherals, and features. This book focuses on the architecture of the processor core. 
For details about the rest of the chip, please check the particular chip manufacturer’s 
documentation. 

Cortex-M3
Core

Debug
System

MemoryPeripherals

Internal Bus

Clock and
Reset I/O

Cortex-M3 Chip

Developed by
ARM

Developed by
chip

manufacturers

Figure 1.1 The Cortex-M3 Processor vs the 
Cortex-M3-Based MCU

Background of ARM and ARM Architecture

A Brief History

To help you understand the variations of ARM processors and architecture versions, let’s look 
at a little bit of ARM history.

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple 
Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the 
ARM6 processor family, and VLSI became the initial licensee. Subsequently, additional 
companies, including Texas Instruments, NEC, Sharp, and ST Microelectronics, licensed the 
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ARM processor designs, extending the applications of ARM processors into mobile phones, 
computer hard disks, personal digital assistants (PDAs), home entertainment systems, and 
many other consumer products.

Nowadays ARM partners ship in excess of 2 billion ARM processors each year. Unlike 
many semiconductor companies, ARM does not manufacture processors or sell the chips 
directly. Instead, ARM licenses the processor designs to business partners, including a 
majority of the world’s leading semiconductor companies. Based on the ARM low-cost and 
power-effi cient processor designs, these partners create their processors, microcontrollers, and 
system-on-chip solutions. This business model is commonly called intellectual property (IP) 
licensing.

In addition to processor designs, ARM also licenses systems-level IP and various software IP. 
To support these products, ARM has developed a strong base of development tools, hardware, 
and software products to enable partners to develop their own products.

Architecture Versions

Over the years, ARM has continued to develop new processors and system blocks. These 
include the popular ARM7TDMI processor and, more recently, the ARM1176TZ(F)-S 
processor, which is used in high-end applications such as smart phones. The evolution of 
features and enhancements to the processors over time has led to successive versions of the 
ARM architecture. Note that architecture version numbers are independent from processor 
names. For example, the ARM7TDMI processor is based on the ARMv4T architecture 
(the T is for Thumb instruction mode support).

The ARMv5E architecture was introduced with the ARM9E processor families, including the 
ARM926E-S and ARM946E-S processors. This architecture added “Enhanced” Digital Signal 
Processing (DSP) instructions for multimedia applications.

With the arrival of the ARM11 processor family, the architecture was extended to the ARMv6. 
New features in this architecture included memory system features and Single Instruction–
Multiple Data (SIMD) instructions. Processors based on the ARMv6 architecture include the 
ARM1136J(F)-S, the ARM1156T2(F)-S, and the ARM1176JZ(F)-S.

Following the introduction of the ARM11 family, it was decided that many of the new 
technologies, such as the optimized Thumb-2 instruction set, were just as applicable 
to the lower-cost markets of microcontroller and automotive components. It was also 
decided that although the architecture needed to be consistent from the lowest MCU to the 
highest-performance application processor, there was a need to deliver processor 
architectures that best fi t applications, enabling very deterministic and low gate count 
processors for cost-sensitive markets and feature-rich and high-performance ones for 
high-end applications.
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Over the past several years, ARM extended its product portfolio by diversifying its CPU 
development, which resulted in the architecture version 7, or v7. In this version, the 
architecture design is divided into three profi les:

• The A profi le, designed for high-performance open application platforms

• The R profi le, designed for high-end embedded systems in which real-time 
performance is needed

• The M profi le, designed for deeply embedded microcontroller-type systems

Let’s look at these profi les in a bit more detail:

• A Profi le (ARMv7-A): Application processors required to run complex applications 
such as high-end embedded operating systems (OSs), such as Symbian, Linux, and 
Windows Embedded, requiring the highest processing power, virtual memory system 
support with Memory Management Units (MMUs), and, optionally, enhanced Java 
support and a secure program execution environment. Example products include high-
end mobile phones and electronic wallets for fi nancial transactions.

• R Profi le (ARMv7-R): Real-time, high-performance processors targeted primarily 
at the higher end of the real-time1 market—those applications, such as high-end 
breaking systems and hard drive controllers, in which high processing power and high 
reliability are essential and for which low latency is important.

• M Profi le (ARMv7-M): Processors targeting low-cost applications in which 
processing effi ciency is important and cost, power consumption, low interrupt latency, 
and ease of use are critical, as well as industrial control applications, including real-
time control systems.

The Cortex processor families are the fi rst products developed on architecture v7, and the 
Cortex-M3 processor is based on one profi le of the v7 architecture, called ARM v7-M, an 
architecture specifi cation for microcontroller products.

This book focuses on the Cortex-M3 processor, but it is only one of the Cortex product family 
that uses the ARMv7 architecture. Other Cortex family processors include the Cortex-A8 
(application processor), which is based on the ARMv7-A profi le, and the Cortex-R4 (real-time 
processor), based on the ARMv7-R profi le.

1 There is always great debate as to whether we can have a “real-time” system using general processors. By 
defi nition, “real time” means that the system can get a response within a guaranteed period. In an ARM 
processor-based system, you may or may not able to get this response due to choice of operating system, 
interrupt latency, or memory latency, as well as if the CPU is running a higher-priority interrupt.
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The details of the ARMv7-M architecture are documented in The ARMv7-M Architecture 
Application Level Reference Manual (Ref 2). This document can be obtained via the ARM 
Web site through a simple registration process. The ARMv7-M architecture contains the 
following key areas:

• Programmer’s model

• Instruction set

• Memory model

• Debug architecture

Processor-specifi c information, such as interface details and timing, is documented in the 
Cortex-M3 Technical Reference Manual (TRM) (Ref 1). This manual can be accessed freely 
on the ARM Web site. The Cortex-M3 TRM also covers a number of implementation details 
not covered by the architecture specifi cations, such as the list of supported instructions, 
because some of the instructions covered in the ARMv7-M architecture specifi cation are 
optional on ARMv7-M devices.

Processor Naming

Traditionally, ARM used a numbering scheme to name processors. In the early days 
(the 1990s), suffi xes were also used to indicate features on the processors. For example, 
with the ARM7TDMI processor, the T indicates Thumb instruction support, D indicates 
JTAG debugging, M indicates fast multiplier, and I indicates an embedded ICE module. 
Subsequently it was decided that these features should become standard features of future 
ARM processors; therefore, these suffi xes are no longer added to the new processor family 

ARM 7TDMI,
920T,
Intel

StrongARM

Architecture
v4/v4T

Architecture
v5/v5E

ARM 926,
946, 966,

Intel XScale

Architecture
v6

ARM 1136,
1176,

1156T-2

Architecture
v7

v7-A (Application;
e.g., Cortex-A8)

v7-R (Real-Time;
e.g., Cortex-R4)

v7-M
(Microcontroller;
e.g., Cortex-M3)

Examples

Figure 1.2 The Evolution of ARM Processor Architecture
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names. Instead, variations on memory interface, cache, and Tightly Coupled Memory (TCM) 
have created a new scheme for processor naming.

For example, ARM processors with cache and MMUs are now given the suffi x “26” or “36,” 
whereas processors with Memory Protection Units (MPUs) are given the suffi x “46” (e.g., 
ARM946E-S). In addition, other suffi xes are added to indicate synthesizable2 (S) and Jazelle 
(J ) technology. Table 1.1 presents a summary of processor names.

Processor Name Architecture Version Memory Management Features Other Features
ARM7TDMI ARMv4T  

ARM7TDMI-S ARMv4T  

ARM7EJ-S ARMv5E  DSP, Jazelle

ARM920T ARMv4T MMU 

ARM922T ARMv4T MMU 

ARM926EJ-S ARMv5E MMU DSP, Jazelle

ARM946E-S ARMv5E MPU DSP

ARM966E-S ARMv5E  DSP

ARM968E-S ARMv5E  DMA, DSP

ARM966HS ARMv5E MPU (optional) DSP

ARM1020E ARMv5E MMU DSP

ARM1022E ARMv5E MMU DSP

ARM1026EJ-S ARMv5E MMU or MPU DSP, Jazelle

ARM1136J(F)-S ARMv6 MMU DSP, Jazelle

ARM1176JZ(F)-S ARMv6 MMU � TrustZone DSP, Jazelle

ARM11 MPCore ARMv6 MMU � multiprocessor cache support DSP, Jazelle

ARM1156T2(F)-S ARMv6 MPU DSP

Cortex-M3 ARMv7-M MPU (optional) NVIC

Cortex-R4 ARMv7-R MPU DSP

Cortex-R4F ARMv7-R MPU DSP � Floating point

Cortex-A8 ARMv7-A MMU � TrustZone DSP, Jazelle

Table 1.1 ARM Processor Names

With version 7 of the architecture, ARM has migrated away from these complex numbering 
schemes that needed to be decoded, moving to a consistent naming for families of processors, 
with Cortex its initial brand. In addition to illustrating the compatibility across processors, this 

2 A synthesizable core design is available in the form of a hardware description language (HDL) such as Verilog 
or VHDL and can be converted into a design netlist using synthesis software.
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system removes confusion between architectural version and processor family number; for 
example, the ARM7TDMI is not a v7 processor but was based on the v4T architecture.

Instruction Set Development

Enhancement and extension of instruction sets used by the ARM processors has been one of 
the key driving forces of the architecture’s evolution.

Historically (since ARM7TDMI), two different instruction sets are supported on the ARM 
processor: the ARM instructions that are 32-bit and Thumb instructions that are 16-bit. During 
program execution, the processor can be dynamically switched between the ARM state or 
the Thumb state to use either one of the instruction sets. The Thumb instruction set provides 
only a subset of the ARM instructions, but it can provide higher code density. It is useful for 
products with tight memory requirements.

v4 v4T

ARM

Thumb

v5 v5E v6

Enhanced
DSP

instructions
added

SIMD, v6
memory
support
added

v7

Architecture development

Thumb
instructions
introduced

Thumb-2
instructions
introduced

Figure 1.3 Instruction Set Enhancement

As the architecture version has been updated, extra instructions have been added to both 
ARM instructions and the Thumb instructions. Appendix II provides some information on 
the change of Thumb instructions during the architecture enhancements. In 2003, ARM 
announced the Thumb-2 instruction set, which is a new superset of Thumb instructions that 
contains both 16-bit and 32-bit instructions.

The details of the instruction set are provided in a document called The ARM Architecture 
Reference Manual (also known as the ARM ARM). This manual has been updated for the 
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ARMv5 architecture, the ARMv6 architecture, and the ARMv7 architecture. For the ARMv7 
architecture, due to its growth into different profi les, the specifi cation is also split into 
different documents. For Cortex-M3 developers, the ARM v7-M Architecture Application 
Level Reference Manual (Ref 2) covers all the required instruction set details.

The Thumb-2 Instruction Set Architecture (ISA)

The Thumb-23 ISA is a highly effi cient and powerful instruction set that delivers signifi cant 
benefi ts in terms of ease of use, code size, and performance. The Thumb-2 instruction set is 
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions 
alongside 32-bit instructions. It allows more complex operations to be carried out in the 
Thumb state, thus allowing higher effi ciency by reducing the number of states switching 
between ARM state and Thumb state.

Thumb
Instructions

(16-bit)

Thumb-2
Instruction Set

(32-bit and 16-bit)

Cortex-M3

Figure 1.4 The Relationship Between the 
Thumb-2 Instruction Set and the Thumb 

Instruction Set

Focused on small memory system devices such as microcontrollers and reducing the size of 
the processor, the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) instruction 
set. Instead of using ARM instructions for some operations, as in traditional ARM processors, 
it uses the Thumb-2 instruction set for all operations. As a result, the Cortex-M3 processor is 
not backward compatible with traditional ARM processors. That is, you cannot run a binary 
image for ARM7 processors on the Cortex-M3 processor. Nevertheless, the Cortex-M3 
processor can execute almost all the 16-bit Thumb instructions, including all 16-bit Thumb 
instructions supported on ARM7 family processors, making application porting easy.

3 Thumb and Thumb-2 are registered trademarks of ARM.
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With support for both 16-bit and 32-bit instructions in the Thumb-2 instructions set, there is 
no need to switch the processor between Thumb state (16-bit instructions) and ARM state 
(32-bit instructions). For example, in ARM7 or ARM9 family processors, you might need 
to switch to ARM state if you want to carry out complex calculations or a large number of 
conditional operations and good performance is needed; whereas in the Cortex-M3 processor, 
you can mix 32-bit instructions with 16-bit instructions without switching state, getting high 
code density and high performance with no extra complexity.

The Thumb-2 instruction set is a very important feature of the ARMv7 architecture. Compared 
with the instructions supported on ARM7 family processors (ARMv4T architecture), the 
Cortex-M3 processor instruction set has a large number of new features. For the fi rst time, 
hardware divide instruction is available on an ARM processor, and a number of multiply 
instructions are also available on the Cortex-M3 processor to improve data-crunching 
performance. The Cortex-M3 processor also supports unaligned data accesses, a feature 
previously available only in high-end processors.

Cortex-M3 Processor Applications

With its high performance and high code density and small silicon footprint, the Cortex-M3 
processor is ideal for a wide variety of applications:

• Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-cost 
microcontrollers, which are commonly used in consumer products, from toys to 
electrical appliances. It is a highly competitive market due to the many well-known 
8-bit and 16-bit microcontroller products on the market. Its lower power, high 
performance, and ease-of-use advantages enable embedded developers to migrate to 
32-bit systems and develop products with the ARM architecture.

• Automotive: Another ideal application for the Cortex-M3 processor is in the 
automotive industry. The Cortex-M3 processor has very high-performance effi ciency 
and low interrupt latency, allowing it to be used in real-time systems. The Cortex-M3 
processor supports up to 240 external vectored interrupts, with a built-in interrupt 
controller with nested interrupt supports and an optional memory protection unit, 
making it ideal for highly integrated and cost-sensitive automotive applications.

• Data communications: The processor’s low power and high effi ciency, coupled with 
Thumb-2 instructions for bit-fi eld manipulation, make the Cortex-M3 ideal for many 
communications applications, such as Bluetooth and ZigBee.

• Industrial control: In industrial control applications, simplicity, fast response, and 
reliability are key factors. Again, the Cortex-M3 processor’s interrupt feature, low 
interrupt latency, and enhanced fault-handling features make it a strong candidate in 
this area.
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• Consumer products: In many consumer products, a high-performance microprocessor 
(or several of them) is used. The Cortex-M3 processor, being a small processor, is 
highly effi cient and low in power and supports an MPU enabling complex software to 
execute while providing robust memory protection.

There are already many Cortex-M3 processor-based products available in the market, 
including low-end products priced as low as US$1, making the cost of ARM microcontrollers 
comparable to or lower than that of many 8-bit microcontrollers.

Organization of This Book

This book contains a general overview of the Cortex-M3 processor, with the rest of the 
contents divided into a number of sections: 

Chapters 1 and 2, Introduction and Overview of the Cortex-M3
Chapters 3–6, Cortex-M3 Basics
Chapters 7–9, Exceptions and Interrupts
Chapters 10 and 11, Cortex-M3 Programming
Chapters 12–14, Cortex-M3 Hardware Features
Chapters 15 and 16, Debug Supports in Cortex-M3
Chapters 17–20, Application Development with Cortex-M3
Appendixes

Further Readings

This book does not contain all the technical details on the Cortex-M3 processor. It is intended 
to be a starter guide for people who are new to the Cortex-M3 processor and a supplemental 
reference for people using Cortex-M3 processor-based microcontrollers. To get further detail 
on the Cortex-M3 processor, the following documents, available from ARM (www.arm.com) 
and ARM partner Web sites, should cover most necessary details:

• The Cortex-M3 Technical Reference Manual (TRM) (Ref 1) provides detailed 
information about the processor, including programmer’s model, memory map, and 
instruction timing.

• The ARMv7-M Architecture Application Level Reference Manual (Ref 2) contains 
detailed information about the instruction set and the memory model.

• Refer to datasheets for the Cortex-M3 processor-based microcontroller products; 
visit the manufacturer Web site for the datasheets on the Cortex-M3 processor-based 
product you plan to use.
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• Refer to AMBA Specifi cation 2.0 (Ref 4) for more detail regarding internal AMBA 
interface bus protocol details.

• C programming tips for Cortex-M3 can be found in the ARM Application Note 179: 
Cortex-M3 Embedded Software Development (Ref 7).

This book assumes that you already have some knowledge of and experience with embedded 
programming, preferably using ARM processors. If you are a manager or a student who 
wants to learn the basics without spending too much time reading the whole book or the 
TRM, Chapter 2 of this book is a good one to read, since it provides a summary on the 
Cortex-M3 processor.
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Overview of the Cortex-M3
CHAPTER 2

In This Chapter:

● Fundamentals
● Registers
● Operation Modes
● The Built-In Nested Vectored Interrupt Controller
● The Memory Map
● The Bus Interface
● The Memory Protection Unit
● The Instruction Set
● Interrupts and Exceptions
● Debugging Support
● Characteristics Summary

Fundamentals

The Cortex-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register bank, 
and 32-bit memory interfaces. The processor has a Harvard architecture, which means it has a 
separate instruction bus and data bus. This allows instructions and data accesses to take place 
at the same time, and as a result of this the processor performance increases because data 
accesses do  not affect the instruction pipeline. This feature results in multiple bus interfaces 
on Cortex-M3, each with optimized usage and the ability to be used simultaneously. However, 
the instruction and data buses share the same memory space (a unifi ed memory system). In other 
words, you cannot get 8 GB of memory space just because you have separate bus interfaces.

For complex applications that require more memory system features, the Cortex-M3 processor 
has an optional MPU, and it is possible to use an external cache if it’s required. Both little 
endian and big endian memory systems are supported.

The Cortex-M3 processor includes a number of fi xed internal debugging components. These 
components provide debugging operation supports and features such as breakpoints and 
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watchpoints. In addition, optional components provide debugging features such as instruction 
trace and various types of debugging interfaces.

Registers

The Cortex-M3 processor has registers R0 to R15. R13 (the stack pointer) is banked, with 
only one copy of the R13 visible at a time.

R0 to R12: General-Purpose Registers

R0 to R12 are 32-bit general-purpose registers for data operations. Some 16-bit Thumb 
instructions can only access a subset of these registers (low registers, R0 to R7).

R13: Stack Pointers

The Cortex-M3 contains two stack pointers, R13. They are banked so that only one is visible 
at a time:

• Main Stack Pointer (MSP): The default stack pointer; used by the OS kernel and 
exception handlers

• Process Stack Pointer (PSP): Used by user application code
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Figure 2.1 A Simplifi ed View of the Cortex-M3
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The lowest two bits of the stack pointers are always 0, which means they are always word 
aligned.

R14: The Link Register

When a subroutine is called, the return address is stored in the link register.

R15: The Program Counter

The program counter is the current program address. This register can be written to control the 
program fl ow.

Special Registers

The Cortex-M3 processor also has a number of special registers:

• Program Status Registers (PSRs)

• Interrupt Mask Registers (PRIMASK, FAULTMASK, BASEPRI)

• Control Register (CONTROL)

Name Functions (and Banked Registers)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14

R15

R13 (PSP)

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

Main Stack Pointer (MSP), Process Stack Pointer (PSP)

Link Register (LR)

Program Counter (PC)

Low Registers

High Registers

Figure 2.2 Registers in the Cortex-M3
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These registers have special functions and can be accessed only by special instructions. They 
cannot be used for normal data processing.

Name

xPSR

PRIMASK

FAULTMASK

BASEPRI

Functions

Program Status Registers

Interrupt Mask
Registers

Control RegisterCONTROL

Special
Registers

Figure 2.3 Special Registers in the Cortex-M3

Register Function
xPSR Provide ALU fl ags (zero fl ag, carry fl ag), execution status, and current executing interrupt
 number

PRIMASK Disable all interrupts except the nonmaskable interrupt (NMI) and HardFault

FAULTMASK Disable all interrupts except the NMI

BASEPRI Disable all interrupts of specifi c priority level or lower priority level

CONTROL Defi ne privileged status and stack pointer selection

Table 2.1 Registers and Their Functions

You’ll fi nd more information on these registers in Chapter 3.

Operation Modes

The Cortex-M3 processor has two modes and two privilege levels. The operation modes (thread 
mode and handler mode) determine whether the processor is running a normal program or 
running an exception handler like an interrupt handler or system exception handler. The privilege 
levels (privileged level and user level) provide a mechanism for safeguarding memory accesses 
to critical regions as well as providing a basic security model. 

Privileged

Handle Mode

Thread Mode Thread Mode

When running an exception

When running main program

Figure 2.4 Operation Modes and Privilege Levels in Cortex-M3

User
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When the processor is running a main program (Thread mode), it can be in either a privileged 
state or a user state, but exception handlers can only be in a privileged state. When the 
processor exits reset, it is in Thread mode, with privileged access rights. In the privileged 
state, a program has access to all memory ranges (except when prohibited by MPU settings) 
and can use all supported instructions.

Software in the privileged access level can switch the program into the user access level using 
the control register. When an exception takes place, the processor will always switch back to 
the privileged state and return to the previous state when exiting the exception handler. A user 
program cannot change back to the privileged state by writing to the Control register. It has 
to go through an exception handler that programs the control register to switch the processor 
back into the privileged access level when returning to Thread mode.

Privileged
Handler

User Thread

Privileged
Thread

Default

Exception

Exception
Exit

Exception

Exception
Exit

Program of
Control
Register

Figure 2.5 Allowed Operation Mode Transitions

The separation of privilege and user levels improves system reliability by preventing system 
confi guration registers from being accessed or changed by some untrusted programs. If an 
MPU is available, it can be used in conjunction with privilege levels to protect critical memory 
locations such as programs and data for operating systems.

For example, with privileged accesses, usually used by the OS kernel, all memory locations 
can be accessed (unless prohibited by MPU setup). When the OS launches a user application, 
it is likely to be executed in the user access level to protect the system from failing due to a 
crash of untrusted user programs.

The Built-In Nested Vectored Interrupt Controller

The Cortex-M3 processor includes an interrupt controller called the Nested Vectored Interrupt 
Controller (NVIC). It is closely coupled to the processor core and provides a number of features:

• Nested interrupt support

• Vectored interrupt support
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• Dynamic priority changes support

• Reduction of interrupt latency

• Interrupt masking

Nested Interrupt Support

The NVIC provides nested interrupt support. All the external interrupts and most of the 
system exceptions can be programmed to different priority levels. When an interrupt occurs, 
the NVIC compares the priority of this interrupt to the current running priority level. If the 
priority of the new interrupt is higher than the current level, the interrupt handler of the new 
interrupt will override the current running task.

Vectored Interrupt Support

The Cortex-M3 processor has vectored interrupt support. When an interrupt is accepted, the 
starting address of the interrupt service routine (ISR) is located from a vector table in memory. 
There is no need to use software to determine and branch to the starting address of the ISR. 
Thus it takes less time to process the interrupt request.

Dynamic Priority Changes Support

Priority levels of interrupts can be changed by software during run time. Interrupts that 
are being serviced are blocked from further activation until the interrupt service routine is 
completed, so their priority can be changed without risk of accidental reentry.

Reduction of Interrupt Latency

The Cortex-M3 processor also includes a number of advanced features to lower the interrupt 
latency. These include automatic saving and restoring some register contents, reducing delay 
in switching from one ISR to another (see the discussion of tail chaining interrupts on page 
152), and handling late arrival interrupts (see page 153.)

Interrupt Masking

Interrupts and system exceptions can be masked based on their priority level or masked 
completely using the interrupt masking registers BASEPRI, PRIMASK, and FAULTMASK. 
They can be used to ensure that time-critical tasks can be fi nished on time without being 
interrupted.
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The Memory Map

The Cortex-M3 has a predefi ned memory map. This allows the built-in peripherals, such 
as the interrupt controller and debug components, to be accessed by simple memory access 
instructions. Thus most system features are accessible in C program code. The predefi ned 
memory map also allows the Cortex-M3 processor to be highly optimized for speed and ease 
of integration in system-on-a-chip (SoC) designs.

Overall, the 4 GB memory space can be divided into the ranges shown in Figure 2.6.

Code

SRAM

External RAM

External Device

Peripherals

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

System Level

0xA0000000

0xDFFFFFFF

0xE0000000

0xFFFFFFFF

Mainly used for program
code, also provides exception
vector table after power-up

Mainly used as static RAM

Mainly used as peripherals

Mainly used as external
memory

Mainly used as external
peripherals

Private peripherals, including
built-in interrupt controller
(NVIC), MPU control
registers, and debug
components

Figure 2.6 The Cortex-M3 Memory Map

The Cortex-M3 design has an internal bus infrastructure optimized for this memory usage. In 
addition, the design allows these regions to be used differently. For example, data memory can 
still be put into the CODE region, and program code can be executed from an external RAM 
region.

The system-level memory region contains the interrupt controller and the debug components. 
These devices have fi xed addresses, detailed in Chapter 5 (Memory Systems) of this book. 
By having fi xed addresses for these peripherals, you can port applications between different 
Cortex-M3 products much more easily.
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The Bus Interface

There are several bus interfaces on the Cortex-M3 processor. They allow the Cortex-M3 to 
carry instruction fetches and data accesses at the same time. The main bus interfaces are:

• Code memory buses

• System bus

• Private peripheral bus

The code memory region access is carried out on the code memory buses, which physically 
consist of two buses, one called I-Code and another called D-Code. These are optimized for 
instruction fetches for best instruction execution speed.

The system bus is used to access memory and peripherals. This provides access to the SRAM, 
peripherals, external RAM, external devices, and part of the system-level memory regions.

The private peripheral bus provides access to a part of the system-level memory dedicated to 
private peripherals such as debugging components.

The Memory Protection Unit

The Cortex-M3 has an optional Memory Protection Unit, or MPU. This unit allows access 
rules to be set up for privileged access and user program access. When an access rule is 
violated, a fault exception is generated, and the fault exception handler will be able to analyze 
the problem and correct it if possible.

The MPU can be used in various ways. In common scenarios, the MPU is set up by an operating 
system, allowing data used by privileged code (e.g., the operating system kernel) to be protected 
from untrusted user programs. The MPU can also be used to make memory regions read-only, 
to prevent accidental erasing of data, or to isolate memory regions between different tasks in a 
multitasking system. Overall, it can help make embedded systems more robust and reliable.

The MPU feature is optional and is determined during the implementation stage of the 
microcontroller or SoC design. For more information on the MPU, refer to Chapter 13.

The Instruction Set

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important 
features of the Cortex-M3 processor because it allows 32-bit instructions and 16-bit 
instructions to be used together for high code density and high effi ciency. It is fl exible and 
powerful yet easy to use.

In previous ARM processors, the CPU had two operation states: a 32-bit ARM state and a 
16-bit Thumb state. In the ARM state, the instructions are 32-bit and can execute all supported 
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instructions with very high performance. In the Thumb state, the instructions are 16-bit, so 
there is a much higher instruction code density, but the Thumb state does not have all the 
functionality of ARM instructions and may require more instructions to complete certain types 
of operations.

To get the best of both worlds, many applications have mixed ARM and Thumb codes. 
However, the mixed-code arrangement does not always work best. There is overhead (in terms 
of both execution time and instruction space) to switch between the states; and ARM code 
and Thumb code might need to be compiled separately in different fi les. This increases the 
complexity of software development and reduces maximum effi ciency of the CPU core.

Timing-Critical Code
in ARM State

Main Program
in Thumb State

Main Program
in Thumb State

Thumb State
(16-bit

Instructions)

ARM State
(32-bit

Instructions)

Time

Branch with
State Change

(e.g., BLX)

Return
(e.g., BX LR)

Overhead

Figure 2.7 Switching Between ARM Code and Thumb Code in Traditional ARM 
Processors Such as the ARM7

With the introduction of the Thumb-2 instruction set, it is now possible to handle all 
processing requirements in one operation state. There is no need to switch between the two. 
In fact, the Cortex-M3 does not support ARM code. Even interrupts are now handled with 
the Thumb state. (Previously, the ARM core entered interrupt handlers in the ARM state.) 
Since there is no need to switch between states, the Cortex-M3 processor has a number of 
advantages over traditional ARM processors:

• No state switching overhead, saving both execution time and instruction space

• No need to separate ARM code and Thumb code source fi les, making software 
development and maintenance easier

• It’s easier to get the best effi ciency and performance, in turn making it easier to write 
software, because there is no need to worry about switching code between ARM and 
Thumb to try to get the best density/performance
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The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a 
few examples:

• UFBX, BFI, BFC: Bit fi eld extract, insert, and clear instructions

• UDIV, SDIV: Unsigned and signed divide instructions

• SEV, WFE, WFI: Send-Event, Wait-For-Event, Wait-For-Interrupts; these allow the 
processor to handle task synchronization on multiprocessor systems or to enter sleep 
mode

• MSR, MRS: For access to the special registers

Since the Cortex-M3 processor supports the Thumb-2 instruction set only, existing program 
code for ARM needs to be ported to the new architecture. Most C applications simply need 
to be recompiled using new compilers that support the Cortex-M3. Some assembler codes 
need modifi cation and porting to utilize the new architecture and the new unifi ed assembler 
framework.

Note that not all the instructions in the Thumb-2 instruction set are implemented on the 
Cortex-M3. The ARMv7-M Architecture Application Level Reference Manual (Ref 2) only 
requires a subset of the Thumb-2 instructions to be implemented. For example, coprocessor 
instructions are not supported on the Cortex-M3 (external data processing engines can 
be added), and SIMD is not implemented on the Cortex-M3. In addition, a few Thumb 
instructions are not supported, such as BLX with immediate (used to switch processor state 
from Thumb to ARM), a couple of CPS instructions, and the SETEND instructions, which 
were introduced in architecture v6. For a complete list of supported instructions, refer to 
Appendix A of this book or the Cortex-M3 Technical Reference Manual (Ref 1).

Interrupts and Exceptions

The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-M 
architecture. This exception model differs from the traditional ARM exception model, enabling 
very effi cient exception handling. It has a number of system exceptions plus a number of 
external IRQs (external interrupt inputs). There is no FIQ (fast interrupt in ARM7/9/10/11) in 
the Cortex-M3; however, interrupt priority handling and nested interrupt support are now 
included in the interrupt architecture. Therefore, it is easy to set up a system that supports 
nested interrupts (a higher-priority interrupt can override, or preempt, a lower-priority interrupt 
handler) and that behaves just like the FIQ in traditional ARM processors.

The interrupt features in the Cortex-M3 are implemented in the NVIC. Aside from supporting 
external interrupts, the Cortex-M3 also supports a number of internal exception sources, such 
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as system fault handling. As a result, the Cortex-M3 has a number of predefi ned exception 
types, as shown in Table 2.2.

The number of external interrupt inputs is defi ned by chip manufacturers. A maximum 
of 240 external interrupt inputs can be supported. In addition, the Cortex-M3 also has an 
NMI interrupt input. When it is asserted, the NMI interrupt service routine is executed 
unconditionally.

Exception Number Exception Type Priority (Default to 0  Description
  if Programmable) 
0 NA NA No exception running

1 Reset �3 (Highest) Reset

2 NMI �2 Nonmaskable interrupt 
   (external NMI input)

3 Hard fault �1 All fault conditions, if the 
   corresponding fault handler 
   is not enabled

4 MemManage fault Programmable Memory management fault; 
   MPU violation or access to 
   illegal locations

5 Bus fault Programmable Bus error (Prefetch Abort or 
   Data Abort)

6 Usage fault Programmable Exceptions due to program 
   error

7–10 Reserved NA Reserved

11 SVCall Programmable System service call

12 Debug monitor Programmable Debug monitor (break 
   points, watchpoints, or 
   external debug request)

13 Reserved NA Reserved

14 PendSV Programmable Pendable request for system 
   device

15 SYSTICK Programmable System tick timer

16 IRQ #0 Programmable External interrupt #0

17 IRQ #1 Programmable External interrupt #1

… … … …

255 IRQ #239 Programmable External interrupt #239

Table 2.2 Cortex-M3 Exception Types
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Debugging Support

The Cortex-M3 processor includes a number of debugging features such as program execution 
controls, including halting and stepping, instruction breakpoints, data watchpoints, registers 
and memory accesses, profi ling, and traces.

The debugging hardware of the Cortex-M3 processor is based on the CoreSight architecture. 
Unlike traditional ARM processors, the CPU core itself does not have a JTAG interface. 
Instead, a debug interface module is decoupled from the core, and a bus interface called 
the Debug Access Port (DAP) is provided at the core level. Via this bus interface, external 
debuggers can access control registers to debug hardware as well as system memory, even 
when the processor is running. The control of this bus interface is carried out by a Debug 
Port (DP) device. The DPs currently available are the SWJ-DP (supports the traditional JTAG 
protocol as well as the Serial Wire protocol) or the SW-DP (supports the Serial Wire protocol 
only). A JTAG-DP module from the ARM CoreSight product family can also be used. Chip 
manufacturers can choose to attach one of these DP modules to provide the debug interface.

Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to allow 
instruction trace. Trace information is output via the Trace Port Interface Unit (TPIU), and the 
debug host (usually a PC) can then collect the executed instruction information via external 
trace-capturing hardware.

Within the Cortex-M3 processor, a number of events can be used to trigger debug actions. 
Debug events can be breakpoints, watchpoints, fault conditions, or external debugging request 
input signals. When a debug event takes place, the Cortex-M3 can either enter halt mode or 
execute the debug monitor exception handler.

The data watchpoint function is provided by a Data Watchpoint and Trace (DWT) unit in the 
Cortex-M3 processor. This can be used to stop the processor (or trigger the debug monitor 
exception routine) or to generate data trace information. When data trace is used, the traced 
data can be output via the TPIU. (In the CoreSight architecture, multiple trace devices can 
share one single trace port.)

In addition to these basic debugging features, the Cortex-M3 processor also provides a Flash 
Patch and Breakpoint (FPB) unit that can provide a simple breakpoint function or remap an 
instruction access from Flash to a different location in SRAM.

An Instrumentation Trace Macrocell (ITM) provides a new way for developers to output data to 
a debugger. By writing data to register memory in the ITM, a debugger can collect the data via a 
trace interface and display or process it. This method is easy to use and faster than JTAG output.

All these debugging components are controlled via the DAP interface bus on the Cortex-M3 or by 
a program running on the processor core, and all trace information is accessible from the TPIU.
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Characteristics Summary

Why is the Cortex-M3 processor such a revolutionary product? What are the advantages of 
using the Cortex-M3? The benefi ts and advantages are summarized in this section.

High Performance

• Many instructions, including multiply, are single cycle. Also, the Cortex-M3 processor 
outperforms most microcontroller products.

• Separate data and instruction buses allow simultaneous data and instruction accesses 
to be performed.

• The Thumb-2 instruction set makes state switching overhead history. There’s no need 
to spend time switching between the ARM state (32-bit) and the Thumb state (16-bit), 
so instruction cycles and program size are reduced. This feature has also simplifi ed 
software development, allowing faster time to market and easier code maintenance.

• The Thumb-2 instruction set provides extra fl exibility in programming. Many data 
operations can now be simplifi ed using shorter code. This also means that the Cortex-
M3 has higher code density and reduced memory requirements.

• Instruction fetches are 32-bit. Up to two instructions can be fetched in one cycle. As a 
result, there’s more available bandwidth for data transfer.

• The Cortex-M3 design allows microcontroller products to operate at high clock 
frequency (over 100 MHz in modern semiconductor manufacturing processes). Even 
running at the same frequency as most other microcontroller products, the Cortex-
M3 has a better clock per instruction (CPI) ratio. This allows more work per MHz, or 
designs can run at lower clock frequency for lower power consumption.

Advanced Interrupt-Handling Features

• The Built-In Nested Vectored Interrupt Controller (NVIC) supports up to 240 external 
interrupt inputs. The vectored interrupt feature greatly reduces interrupt latency 
because there is no need to use software to determine which IRQ handler to serve. In 
addition, there is no need to have software code to set up nested interrupt support.

• The Cortex-M3 processor automatically pushes registers R0–R3, R12, LR, PSR, and 
PC in the stack at interrupt entry and pops them back at interrupt exit. This reduces 
the IRQ handling latency and allows interrupt handlers to be normal C functions (as 
explained later, in Chapter 8).
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• Interrupt arrangement is extremely fl exible because the NVIC has programmable 
interrupt priority control for each interrupt. A minimum of eight levels of priority are 
supported, and the priority can be changed dynamically.

• Interrupt latency is reduced by special optimization, including late arrival interrupt 
acceptance and tail-chain interrupt entry.

• Some of the multicycle operations, including Load-Multiple (LDM), Store-Multiple 
(STM), PUSH, and POP, are now interruptible.

• On receipt of a Nonmaskable Interrupt (NMI) request, immediate execution of the 
NMI handler is guaranteed unless the system is completely locked up. NMI is very 
important for many safety-critical applications.

Low Power Consumption

• The Cortex-M3 processor is suitable for low-power designs because of the low gate 
count.

• It has power-saving mode support (SLEEPING and SLEEPDEEP). The processor can 
enter sleep mode using Wait for Interrupt (WFI) or Wait for Event (WFE) instructions. 
The design has separated clocks for essential blocks, so clocking circuits for most 
parts of the processor can be stopped during sleep.

• The fully static, synchronous, synthesizable design makes the processor easy to be 
manufactured using any lower power or standard semiconductor process technology.

System Features

• The system provides bit-band operation, byte-invariant big endian mode, and 
unaligned data access support.

• Advanced fault-handling features include various exception types and fault status 
registers, making it easier to locate problems.

• With the shadowed stack pointer, stack memory of kernel and user processes can be 
isolated. With the optional MPU, the processor is more than suffi cient to develop 
robust software and reliable products.

Debug Supports

• Supports JTAG or Serial Wire debug interfaces

• Based on the CoreSight debugging solution; processor status or memory contents can 
be accessed even when the core is running
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• Built-in support for six breakpoints and four watchpoints

• Optional ETM for instruction trace and data trace using DWT

• New debugging features, including fault status registers, new fault exceptions, and 
Flash patch operations, making debugging much easier

• ITM provides an easy-to-use method to output debug information from test code

• PC Sampler and counters inside the DWT provide code-profi ling information
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 Cortex-M3 Basics
CHAPTER 3

In This Chapter:

● Registers
● Special Registers
● Operation Mode
● Exceptions and Interrupts
● Vector Tables
● Stack Memory Operations
● Reset Sequence

Registers

As we’ve seen, the Cortex-M3 processor has registers R0–R15 and a number of special 
registers. R0–R12 are general purpose, but some of the 16-bit Thumb instructions can only 
access R0–R7 (low registers), whereas 32-bit Thumb-2 instructions can access all these 
registers. Special registers have predefi ned functions and can only be accessed by special 
register access instructions.

General-Purpose Registers R0–R7

The R0–R7 general-purpose registers are also called low registers. They can be accessed by 
all 16-bit Thumb instructions and all 32-bit Thumb-2 instructions. They are all 32-bit; the 
reset value is unpredictable.

General-Purpose Registers R8–R12

The R8–R12 registers are also called high registers. They are accessible by all Thumb-2 
instructions but not by all 16-bit Thumb instructions. These registers are all 32-bit; the reset 
value is unpredictable.
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Stack Pointer R13

R13 is the stack pointer. In the Cortex-M3 processor, there are two stack pointers. This duality 
allows two separate stack memories to be set up. When using the register name R13, you 
can only access the current stack pointer; the other one is inaccessible unless you use special 
instructions MSR and MRS. The two stack pointers are:

• Main Stack Pointer (MSP), or SP_main in ARM documentation: This is the default 
stack pointer; it is used by the OS kernel, exception handlers, and all application codes 
that require privileged access.

• Process Stack Pointer (PSP), or SP_process in ARM documentation: Used by the 
base-level application code (when not running an exception handler). 

Name Functions (and Banked Registers)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (MSP)

R14

R15

R13 (PSP)

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

General-Purpose Register

Main Stack Pointer (MSP), Process Stack Pointer (PSP)

Link Register (LR)

Program Counter (PC)

Low Registers

High Registers

xPSR

PRIMASK

FAULTMASK

BASEPRI

Program Status Registers

Interrupt Mask
Registers

Control RegisterCONTROL

Special
Registers

Figure 3.1 Registers in the Cortex-M3
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In the Cortex-M3, the instructions for accessing stack memory are PUSH and POP. The 
assembly language syntax is as follows (text after each semicolon [ ; ] is a comment):

PUSH {R0} ; R13�R13-4, then Memory[R13] � R0
POP {R0} ; R0 � Memory[R13], then R13 � R13�4

The Cortex-M3 uses a full-descending stack arrangement. (More detail on this subject can be 
found in the Stack Memory Operations section of this chapter.) Therefore, the stack pointer 
decrements when new data is stored in the stack. PUSH and POP are usually used to save 

Stack PUSH and POP

Stack is a memory usage model. It is simply part of the system memory, and a pointer 
register (inside the processor) is used to make it work as a fi rst-in/last-out buffer. The 
common use of a stack is to save register contents before some data processing and then 
restore those contents from the stack after the processing task is done.

Data Processing
(original register

contents destroyed)

SP

Memory

Register
contents

PUSH

Memory

POP

Register
contents restored

Stack PUSH operation to
back up register contents

Stack POP operation to
restore register contents

Figure 3.2 Basic Concept of Stack Memory

When doing PUSH and POP operations, the pointer register, commonly called Stack 
Pointer (SP), is adjusted automatically to prevent next stack operations from corrupting 
previous stacked data. More details on stack operations is provided on later part of this 
chapter.

It is not necessary to use both stack pointers. Simple applications can rely purely on the MSP. 
The stack pointers are used for accessing stack memory processes such as PUSH and POP.
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register contents to stack memory at the start of a subroutine and then restore the registers 
from stack at the end of the subroutine. You can PUSH or POP multiple registers in one 
instruction:

subroutine_1
 PUSH {R0-R7, R12, R14} ; Save registers
 …  ; Do your processing
 POP {R0-R7, R12, R14} ; Restore registers
 BX R14 ; Return to calling function

Instead of using R13, you can use SP (for stack pointer) in your program codes. It means the 
same thing. Inside program code, both the MSP and the PSP can be called R13/SP. However, 
you can access a particular one using special register access instructions (MRS/MSR).

The MSP, also called SP_main in ARM documentation, is the default stack pointer after 
power-up; it is used by kernel code and exception handlers. The PSP, or SP_process in ARM 
documentation, is typically used by Thread processes. 

Since register PUSH and POP operations are always word aligned (their addresses must be 
0x0, 0x4, 0x8, …), the stack pointer R13 bit 0 and bit 1 are hardwired to zero and always read 
as zero (RAZ).

Link Register R14

R14 is the link register (LR). Inside an assembly program, you can write it as either R14 or 
LR. LR is used to store the return program counter when a subroutine or function is called—
for example, when you’re using the BL (branch and link) instruction:

main ; Main program
 …
 BL  function1  ; Call function1 using Branch with Link 

; instruction.
   ; PC � function1 and 

; LR � the next instruction in main
 …
function1
 … ; Program code for function 1
 BX  LR ; Return

Despite the fact that bit 0 of the program counter is always 0 (because instructions are word 
aligned or half word aligned), the LR bit 0 is readable and writable. This is because in the 
Thumb instruction set, bit 0 is often used to indicate ARM/Thumb states. To allow the 
Thumb-2 program for the Cortex-M3 to work with other ARM processors that support 
the Thumb-2 instruction set, this LSB is writable and readable.
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Program Counter R15

R15 is the program counter. You can access it in assembler code by either R15 or PC. Due to 
the pipelined nature of the Cortex-M3 processor, when you read this register you will fi nd that 
the value is different than the location of the executing instruction by 4. For example:

0x1000 :   MOV   R0, PC   ; R0 = 0x1004

Writing to the program counter will cause a branch (but link registers do not get updated). 
Since an instruction address must be half word aligned, the LSB (bit 0) of the program 
counter read value is always 0. However, in branching, either by writing to PC or using branch 
instructions, the LSB of the target address should be set to 1 because it is used to indicate 
the Thumb state operations. If it is 0, it can imply trying to switch to the ARM state and will 
result in a fault exception in the Cortex-M3.

Special Registers

The special registers in the Cortex-M3 processor include these:

• Program Status Registers (PSRs)

• Interrupt Mask Registers (PRIMASK, FAULTMASK, and BASEPRI)

• Control Register (Control)

Special registers can only be accessed via MSR and MRS instructions; they do not have 
memory addresses:

     MRS   <reg>, <special_reg>; Read special register
     MSR   <special_reg>, <reg>; write to special register

Program Status Registers (PSRs)

The program status registers are subdivided into three status registers: 

• Application PSR (APSR)1

• Interrupt PSR (IPSR)

•  Execution PSR (EPSR)

The three PSRs can be accessed together or separately using the special register access 
instructions MSR and MRS. When they are accessed as a collective item, the name xPSR 
is used.

1 In the beginning of Cortex-M3 development, APSR was called Flags Program Status Word (FPSR), so some 
early versions of development tools might use the name FPSR for APSR.
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You can read the program status registers using the MRS instruction. You can also change the 
APSR using the MSR instruction, but EPSR and IPSR are read-only. For example:

MRS     r0, APSR     ; Read Flag state into R0
MRS     r0, IPSR     ; Read Exception/Interrupt state
MRS     r0, EPSR     ; Read Execution state
MSR     APSR, r0     ; Write Flag state

In ARM assembler, when accessing xPSR (all three program status registers as one), the 
symbol PSR is used:

MRS     r0, PSR     ; Read the combined program status word
MSR     PSR, r0     ; Write combined program state word

The descriptions for the bit fi elds in PSR are shown in Table 3.1.

 31 30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

APSR N Z C V Q

IPSR            Exception Number

EPSR ICI/IT T ICI/IT

Figure 3.3 Program Status Registers (PSRs) in the Cortex-M3

 31 30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

xPSR N Z C V Q ICI/IT T   ICI/IT  Exception Number

Figure 3.4 Combined Program Status Registers (xPSR) in the Cortex-M3

Bit Description
N Negative

Z Zero

C Carry/borrow

V Overfl ow

Q Sticky saturation fl ag

ICI/IT Interrupt-Continuable Instruction (ICI) bits, IF-THEN instruction status bit

T Thumb state, always 1; trying to clear this bit will cause a fault exception

Exception  Indicates which exception the processor is handling
Number

Table 3.1 Bit Fields in Cortex-M3 Program Status Registers
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If you compare this with the Current Program Status Register (CPSR) in ARM7, you might 
fi nd that some bit fi elds that were used in ARM7 are gone. The Mode (M) bit fi eld is gone 
because the Cortex-M3 does not have the operation mode as defi ned in ARM-7. Thumb-
bit (T) is moved to bit 24. Interrupt status (I and F) bits are replaced by the new interrupt 
mask registers (PRIMASKs), which are separated from PSR. For comparison, the CPSR in 
traditional ARM processors is shown in Figure 3.5.

 31 30 29 28 27 26:25 24 23:20 19:16 15:10 9 8 7 6 5 4:0

ARM N Z C V Q IT J Resrv GE[3:0] IT E A I F T M[4:0]

Figure 3.5 Current Program Status Registers (CPSR) in Traditional ARM Processors

PRIMASK, FAULTMASK, and BASEPRI Registers

The PRIMASK, FAULTMASK, and BASEPRI registers are used to disable exceptions (see 
Table 3.2).

Register Name Description
PRIMASK  A 1-bit register. When this is set, it allows NMI and the hard fault exception; all other 

interrupts and exceptions are masked. The default value is 0, which means that no 
masking is set.

FAULTMASK  A 1-bit register. When this is set, it allows only the NMI, and all interrupts and fault 
handling exceptions are disabled. The default value is 0, which means that no masking 
is set.

BASEPRI  A register of up to 9 bits (depending on the bit width implemented for priority level). It 
defi nes the masking priority level. When this is set, it disables all interrupts of the same or 
lower level (larger priority value). Higher-priority interrupts can still be allowed. If this is 
set to 0, the masking function is disabled (this is the default).

Table 3.2 Cortex-M3 Interrupt Mask Registers

The PRIMASK and BASEPRI registers are useful for temporarily disabling interrupts in 
timing-critical tasks. An OS could use FAULTMASK to temporarily disable fault handling 
when a task has crashed. In this scenario, a number of different faults might be taking place 
when a task crashes. Once the core starts cleaning up, it might not want to be interrupted by 
other faults caused by the crashed process. Therefore, the FAULTMASK gives the OS kernel 
time to deal with fault conditions.
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To access the PRIMASK, FAULTMASK, and BASEPRI registers, the MRS and MSR 
instructions are used. For example:

MRS     r0, BASEPRI   ; Read BASEPRI register into R0
MRS     r0, PRIMASK   ; Read PRIMASK register into R0
MRS     r0, FAULTMASK ; Read FAULTMASK register into R0
MSR     BASEPRI, r0   ; Write R0 into BASEPRI register
MSR     PRIMASK, r0   ; Write R0 into PRIMASK register
MSR     FAULTMASK, r0 ; Write R0 into FAULTMASK register

The PRIMASK, FAULTMASK, and BASEPRI registers cannot be set in the user access level.

The Control Register

The Control register is used to defi ne the privilege level and the stack pointer selection. This 
register has two bits, as shown in Table 3.3.

Bit Function
CONTROL[1] Stack status:

 1 � Alternate stack is used

 0 � Default stack (MSP) is used

  If it is in the Thread or base level, the alternate stack is the PSP. There is no alternate stack 
for handler mode, so this bit must be zero when the processor is in handler mode.

CONTROL[0]  0 � Privileged in Thread mode

 1 � User state in Thread mode

  If in handler mode (not Thread mode), the processor operates in privileged mode.

Table 3.3 Cortex-M3 CONTROL Register

CONTROL[1]

In the Cortex-M3, the CONTROL[1] bit is always 0 in handler mode. However, in the Thread 
or base level, it can be either 0 or 1.

This bit is writable only when the core is in Thread mode and privileged. In the user state or 
handler mode, writing to this bit is not allowed. Aside from writing to this register, another 
way to change this bit is to change bit 2 of the LR when in exception return. This subject is 
discussed in Chapter 8, where details on exceptions are described.

CONTROL[0]

The CONTRL[0] bit is writable only in a privileged state. Once it enters the user state, the 
only way to switch back to privileged is to trigger an interrupt and change this in the exception 
handler.
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To access the Control register, the MRS and MSR instructions are used:

MRS     r0, CONTROL ; Read CONTROL register into R0
MSR     CONTROL, r0 ; Write R0 into CONTROL register

Operation Mode

The Cortex-M3 processor supports two modes and two privilege levels. 

When the processor is running in Thread mode, it can be in either the privileged or user level, 
but handlers can only be in the privileged level. When the processor exits reset, it is in Thread 
mode, with privileged access rights.

In the user access level (Thread mode), access to the System Control Space, or SCS—a part 
of the memory region for confi guration registers and debugging components—is blocked. 
Furthermore, instructions that access special registers (such as MSR, except when accessing 
APSR) cannot be used. If a program running at the user access level tries to access SCS or 
special registers, a fault exception will occur.

Software in a privileged access level can switch the program into the user access level using 
the Control register. When an exception takes place, the processor will always switch to a 
privileged state and return to the previous state when exiting the exception handler. A user 
program cannot change back to the privileged state directly by writing to the Control register. 
It has to go through an exception handler that programs the Control register to switch the 
processor back into privileged access level when returning to Thread mode.

Starting

code

Privileged
Thread

User Thread

Privileged
Handler

Switch to user
mode by writing to

Control register

User

mode

Exception

User

mode

Reprogram
Control
register

Privileged

thread
Exception

Exception

handler

Exception

handler

Figure 3.7 Switching of Operation Mode by Programming the Control Register or by Exceptions

Figure 3.6 Operation Modes and Privilege Levels in Cortex-M3

Handler Mode

Thread Mode Thread Mode

 Privileged User

When running an exception

When running main program
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The support of privileged and user access levels provides a more secure and robust architecture. 
For example, when a user program goes wrong, it will not be able to corrupt Control registers 
in the NVIC. In addition, if the MPU is present, it is possible to block user programs from 
accessing memory regions used by privileged processes.

You can separate the user application stack from the kernel stack memory to avoid the 
possibility of crashing a system caused by stack operation errors in user programs. With this 
arrangement, the user program (running in Thread mode) uses the PSP, and the exception 
handlers use the MSP. The switching of stack pointers is automatic upon entering or leaving 
the exception handlers. This topic is discussed in more detail in Chapter 8 of this book.

The mode and access level of the processor are defi ned by the Control register. When the 
Control regsister bit 0 is zero, the processor mode changes when an exception takes place.

Thread Mode
(Privileged)

Handler Mode
(Privileged)

Thread Mode
(Privileged)

Time

Main
Program

Interrupt
Event

Interrupt Service
Routine (ISR)

Interrupt
Exit

Stacking Unstacking

Figure 3.8 Switching Processor Mode at Interrupt

When Control register bit 0 is one (Thread running user application), both processor mode and 
access level change when an exception takes place.

Thread Mode
(User)

Handler Mode
(Privileged)

Thread Mode
(User)

Time

Main
Program

Interrupt
Event

Interrupt Service
Routine (ISR)

Interrupt
Exit

Stacking Unstacking

Figure 3.9 Switching Processor Mode and Privilege Level at Interrupt

Control register bit 0 is programmable only in the privileged level. For a user-level program 
to switch to privileged state, it has to raise an interrupt (for example, SVC, or System Service 
Call) and write to CONTROL[0] within the handler.
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Exceptions and Interrupts

The Cortex-M3 supports a number of exceptions, including a fi xed number of system 
exceptions and a number of interrupts, commonly called IRQ. The number of interrupt inputs 
on a Cortex-M3 microcontroller depends on the individual design. Interrupts generated by 
peripherals, except System Tick Timer, are also connected to the interrupt input signals. The 
typical number of interrupt inputs is 16 or 32. However, you might fi nd some microcontroller 
designs with more (or fewer) interrupt inputs.

Besides the interrupt inputs, there is also an NMI input signal. The actual use of NMI depends 
on the design of the microcontroller or SoC product you use. In most cases, the NMI could be 
connected to a watchdog timer or a voltage-monitoring block that warns the processor when 
the voltage drops below a certain level. The NMI signal can be activated any time, even right 
after the core exits reset. 

The list of exceptions found in the Cortex-M3 is shown in Table 3.4. A number of the system 
exceptions are fault-handling exceptions that can be triggered by various error conditions. The 
NVIC also provides a number of fault status registers so that error handlers can determine the 
cause of the exceptions.

Table 3.4 Exception Types in Cortex-M3

Exception Number Exception Type Priority Function
1 Reset �3 (Highest) Reset

2 NMI �2 Nonmaskable interrupt

3 Hard fault �1  All classes of fault, when the 
corresponding fault handler cannot be 
activated because it is currently disabled 
or masked by exception masking

4 MemManage Settable  Memory management fault; caused 
by MPU violation or invalid accesses 
(such as an instruction fetch from a 
nonexecutable region)

5 BusFault Settable  Error response received from the bus 
system; caused by an instruction prefetch 
abort or data access error

6 Usage fault Settable  Usage fault; typical causes are invalid 
instructions or invalid state transition 
attempts (such as trying to switch to ARM 
state in the Cortex-M3)

7–10 – – Reserved

11 SVC Settable System service call via SVC instruction

(Continued)
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More details on exception operations in the Cortex-M3 are discussed in Chapters 7–9.

Vector Tables

When an exception event takes place on the Cortex-M3 and is accepted by the processor core, 
the corresponding exception handler is executed. To determine the starting address of the 
exception handler, a vector table mechanism is used. The vector table is an array of word data, 
each representing the starting address of one exception type. The vector table is relocatable 
and the relocation is controlled by a relocation register in the NVIC. After reset, this relocation 
control register is reset to 0; therefore, the vector table is located in address 0x0 after reset.

Table 3.4 (Continued)

Exception Number Exception Type Priority Function

12 Debug monitor Settable Debug monitor

13 — — Reserved

14 PendSV Settable Pendable request for System Service

15 SYSTICK Settable System Tick Timer

16–255 IRQ Settable IRQ input #0–239

Table 3.5 Vector Table Defi nition After Reset

Exception Type Address Offset Exception Vector
18–255 0x48–0x3FF IRQ #2–239

17 0x44 IRQ #1

16 0x40 IRQ #0

15 0x3C SYSTICK

14 0x38 PendSV

13 0x34 Reserved

12 0x30 Debug Monitor

11 0x2C SVC

7–10 0x1C–0x28 Reserved

6 0x18 Usage fault

5 0x14 Bus fault

4 0x10 MemManage fault

3 0x0C Hard fault

2 0x08 NMI

1 0x04 Reset

0 0x00 Starting value of the MSP
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For example, if the reset is exception type 1, the address of the reset vector is 1 times 4 (each 
word is 4 bytes), which equals 0x00000004, and NMI vector (type 2) is located in 2 � 4 � 
0x00000008. The address 0x00000000 is used as the starting value for the MSP. 

The LSB of each exception vector indicates whether the exception is to be executed in the 
Thumb state. Since the Cortex-M3 can support only Thumb instructions, the LSB of all the 
exception vectors should be set to 1.

Stack Memory Operations

In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the stack PUSH 
and POP operations are also carried out automatically when entering or exiting an exception/
interrupt handler. In this section we examine the software stack operations. (Stack operations 
during exception handling are covered in Chapter 9.)

Basic Operations of the Stack

In general, stack operations are memory write or read operations, with the address specifi ed by 
a stack pointer (SP). Data in registers are saved into stack memory by a PUSH operation and 
can be restored to registers later by a POP operation. The stack pointer is adjusted automatically 
in PUSH and POP so that multiple data PUSH will not cause old stacked data to be erased. 

The function of the stack is to store register contents in memory so that they can be restored 
later, after a processing task is completed. For normal uses, for each store (PUSH) there must 
be a corresponding read (POP), and the address of the POP operation should match that of the 
PUSH operation (see Figure 3.10). When PUSH/POP instructions are used, the stack pointer 
is incremented/decremented automatically.

Main Program

        ...
; R0 = X, R1 = Y, R2 = Z

BL    function1

; Back to main program

; R0 = X, R1 = Y, R2 = Z

... ; next instructions

function1
PUSH    {R0} ; store R0 to stack & adjust SP

PUSH    {R1} ; store R1 to stack & adjust SP

PUSH    {R2} ; store R2 to stack & adjust SP

...           ; Executing task (R0, R1 and R2

              ; could be changed)

POP     {R2} ; restore R2 and SP re-adjusted

POP     {R1} ; restore R1 and SP re-adjusted

POP     {R0} ; restore R0 and SP re-adjusted

BX      LR   ; Return

Subroutine

Figure 3.10 Stack Operation Basics: One Register in Each Stack Operation
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When program control returns to the main program, the R0–R2 contents are the same as 
before. Notice the order of PUSH and POP: The POP order must be the reverse of PUSH.

These operations can be simplifi ed, thanks to PUSH and POP instructions allowing multiple 
load and store. In this case, the ordering of a register POP is automatically reversed by the 
processor (see Figure 3.11).

You can also combine RETURN with a POP operation. This is done by pushing the LR to the 
stack and popping it back to PC at the end of the subroutine (see Figure 3.12).

Cortex-M3 Stack Implementation

The Cortex-M3 employs a full-descending stack operation model. The stack pointer (SP) 
points to the last data pushed to the stack memory, and the SP decrements before a new PUSH 
operation. See Figure 3.13 for an example showing execution of the instruction PUSH {R0}.

Figure 3.11 Stack Operation Basics: Multiple Register Stack Operation

Thread Mode 
(Use MSP)

Handler Mode 
(Use MSP)

Thread Mode 
(Use MSP)

Time

Main 
program

Interrupt 
event

Interrupt Service 
Routine (ISR)

Interrupt 
Exit

Stacking Unstacking

Figure 3.12 Stack Operation Basics: Combining Stack POP and RETURN

Thread Mode 
(Use MSP)

Handler Mode 
(Use MSP)

Thread Mode 
(Use PSP)

Time

Main 
program

Interrupt 
event

Interrupt Service 
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Interrupt 
Exit

Stacking Unstacking
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For POP operations, the data is read from the memory location pointer by SP, then the stack 
pointer is incremented. The contents in the memory location are unchanged but will be 
overwritten when the next PUSH operation takes place (see Figure 3.14). 

Last pushed data
—
—

Memory
address

Occupied
Occupied

SP

0x12345678R0

PUSH  {R0}

Occupied
0x12345678

—

Occupied
Occupied

SP
Stack
growth

Figure 3.13 Cortex-M3 Stack PUSH Implementation

Memory
address

Occupied

0x12345678
—

Occupied
Occupied

SP

POP  {R0}

Occupied
0x12345678

—

Occupied
Occupied

SP

0x12345678R0—R0

Figure 3.14 Cortex-M3 Stack POP Implementation

Since each PUSH/POP operation transfers 4 bytes of data (each register contains 1 word, or 
4 bytes), the SP decrements/increments by 4 at a time, or a multiple of 4 if more than one 
register is pushed or popped.

In the Cortex-M3, R13 is defi ned as the SP. When an interrupt takes place, a number of 
registers will be pushed automatically, and R13 will be used as the SP for this stacking 
process. Similarly, the pushed registers will be restored/popped automatically when exiting an 
interrupt handler, and the stack pointer will also be adjusted. 

The Two-Stack Model in the Cortex-M3

As mentioned before, the Cortex-M3 has two stack pointers: the Main Stack Pointer (MSP) 
and the Process Stack Pointer (PSP). The SP register to be used is controlled by the Control 
register bit 1 (CONTROL[1] in the following text).

When CONTROL[1] is 0, the MSP is used for both Thread mode and handler mode. In this 
arrangement, the main program and the exception handlers share the same stack memory 
region. This is the default setting after power-up. 

When the Control register bit 1 is 1, the PSP is used in Thread mode. In this arrangement, the 
main program and the exception handler can have separate stack memory regions. This can 
prevent a stack error in a user application from damaging the stack used by the OS (assuming 
that the user application runs only in Thread mode and the OS kernel executes in handler mode).
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Note that in this situation, the automatic stacking and unstacking mechanism will use PSP; 
whereas stack operations inside the handler will use MSP.

It is possible to perform read/write operations directly to the MSP and PSP, without any 
confusion of which R13 you are referring to. Provided that you are in privileged level, you can 
access MSP and PSP using the MRS and MSR instructions:

    MRS  R0, MSP    ; Read Main Stack Pointer to R0
    MSR  MSP, R0    ; Write R0 to Main Stack Pointer
    MRS  R0, PSP    ; Read Process Stack Pointer to R0
    MSR  PSP, R0    ; Write R0 to Process Stack Pointer

By reading the PSP value using an MRS instruction, the OS can read data stacked by the user 
application (such as register contents before System Service Call, SVC). In addition, the OS can 
change the PSP pointer value—for example, during context switching in multitasking systems.

Reset Sequence

After the processor exits reset, it will read two words from memory:

• Address 0x00000000: Starting value of R13 (the stack pointer)

Thread Mode
(Use MSP)

Handler Mode
(Use MSP)

Thread Mode
(Use MSP)

Time

Main
Program

Interrupt
Event

Interrupt Service
Routine (ISR)

Interrupt
Exit

Stacking Unstacking

Figure 3.15 Control[1]�0: Both Thread Level and Handler Use Main Stack

Thread Mode
(Use PSP)

Handler Mode
(Use MSP)

Thread Mode
(Use PSP)

Time

Main
Program

Interrupt
Event

Interrupt Service
Routine (ISR)

Interrupt
Exit

Stacking Unstacking

Figure 3.16 Control[1]�1: Thread Level Uses Process Stack and Handler Uses Main Stack
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• Address 0x00000004: Reset vector (the starting address of program execution; LSB 
should be set to 1 to indicate Thumb state)

This differs from traditional ARM processor behavior. Previous ARM processors executed 
program code starting from address 0x0. Furthermore, the vector table in previous ARM 
devices was instructions (you have to put a branch instruction there so that your exception 
handler can be put in another location). In the Cortex-M3, the initial value for the MSP is 
put at the beginning of the memory map, followed by the vector table, which contains vector 
address values. (The vector table can be relocated to another location later, during program 
execution.) In addition, the contents of the vector table are address values, not branch 
instructions. The fi rst item in the vector table (exception type 1) is the reset vector, which is 
the second piece of data fetched by the processor after reset.

Time

Reset
Address �

0x00000000
Address �

0x00000004
Address �

Reset Vector

Fetch Initial
SP Value

Fetch Reset
Vector

Instruction
Fetch

Figure 3.17 Reset Sequence

Other Memory

0x20008000
1st Stacked Item
2nd Stacked Item

Other Memory

0x20007FFC
0x20007FF8

0x20007C00

Stack
Memory

Initial SP Value
0x20008000

Stack
grows

downward

0x200080000x00000000
0x00000004 0x00000101

Boot Code0x00000100

Reset
Vector

Other Exception
Vectors

Flash

Figure 3.18 Initial Stack Pointer Value and Initial Program Counter (PC) Value Example
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Since the stack operation in the Cortex-M3 is a full descending stack (stack pointer decrement 
before store), the initial stack pointer value should be set to the fi rst memory after the top 
of the stack region. For example, if you have a stack memory range from 0x20007C00 to 
0x20007FFF (1 K bytes), the initial stack value should be set to 0x20008000.

The vector table starts after the initial SP value. The fi rst vector is the reset vector. Notice 
that in the Cortex-M3, vector addresses in the vector table should have their LSB set to 1 to 
indicate that they are Thumb code. For that reason, the previous example has 0x101 in the 
reset vector, whereas the boot code starts at address 0x100. After the reset vector is fetched, 
the Cortex-M3 can then start to execute the program from the reset vector address and begin 
normal operations. It is necessary to have the stack pointer initialized, because some of 
the exceptions (such as NMI) can happen right after reset, and the stack memory could be 
required for the handler of those exceptions.

Various software development tools might have different ways to specify the starting stack 
pointer value and reset vector. If you need more information on this topic, it’s best to look 
at project examples provided with the development tools. Simple examples are provided in 
Chapter 10 and Chapter 20 of this book for ARM tools and in Chapter 19 for the GNU tool 
chain.
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Instruction Sets
CHAPTER 4

In This Chapter:

● Assembly Basics
● Instruction List
● Instruction Descriptions
● Several Useful Instructions in the Cortex-M3

This chapter provides some insight into the instruction set in the Cortex-M3 and examples 
for a number of instructions. You’ll also fi nd a quick reference of the support instructions in 
Appendix A of this book. For complete details of each instruction, refer to the ARM v7-M 
Architecture Application Level Reference Manual (Ref 2).

Assembly Basics

Here we introduce some basic syntax of ARM assembly to make it easier to understand the 
rest of the code examples in this book. Most of the assembly code examples in this book are 
based on the ARM assembler tools, with the exception of those in Chapter 19, which focus on 
the GNU tool chain.

 Assembler Language: Basic Syntax

In assembler code, the following instruction formatting is commonly used:

label
          opcode operand1, operand2,... ; Comments

The label is optional. Some of the instructions might have a label in front of them so that 
the address of the instructions can be determined using the label. Then you will fi nd the 
opcode (the instruction), followed by a number of operands. Normally, the fi rst operand is 
the destination of the operation. The number of operands in an instruction depends on the 
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type of instruction, and the syntax format of the operand can also be different. For example, 
immediate data are usually in the form #number, as here:

    MOV R0, #0x12 ; Set R0 = 0x12 (hexadecimal)
    MOV R1, #‘A’  ; Set R1 = ASCII character A

The text after each semicolon (;) is a comment. These comments do not affect the program 
operation, but they can make programs easier for humans to understand.

You can defi ne constants using EQU and then use them inside your program code. For example:

NVIC_IRQ_SETEN0 EQU 0xE000E100
NVIC_IRQ0_ENABLE EQU 0x1
 ...
 LDR R0,�NVIC_IRQ_SETEN0   ; LDR here is a pseudo instruction that 

; convert to a PC relative load by 
; assembler.

 MOV R1,#NVIC_IRQ0_ENABLE ; Move immediate data to register
 STR R1, [R0]  ; Enable IRQ 0 by writing R1 to address 

; in R0

DCI can be used to code an instruction if your assembler cannot generate the exact instruction 
that you want and if you know the binary code for the instruction:

DCI 0xBE00 ; Breakpoint (BKPT 0), a 16-bit instruction

We can use DCB (for byte size constant values such as characters) and DCD (for word size 
constant values) to defi ne binary data in your code:

 LDR R3,=MY_NUMBER ; Get the memory address value of MY_NUMBER
 LDR R4,[R3]       ; Get the value code 0x12345678 in R4
 ...
 LDR R0,=HELLO_TXT  ; Get the starting memory address of

; HELLO_TXT
 BL  PrintText      ; Call a function called PrintText to 

; display string
 ...
MY_NUMBER
 DCD 0x12345678
HELLO_TXT
 DCB “Hello\n”,0    ; null terminated string

Note that the assembler syntax depends on which assembler tool you are using. Here the ARM 
assembler tools syntax is introduced. For syntax of other assemblers, it is best to start from the 
code examples provided with the tools.

Assembler Language: Use of Suffi xes

In assembler for ARM processors, instructions can be followed by suffi xes, as shown in 
Table 4.1.
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For the Cortex-M3, the conditional execution suffi xes are usually used for branch instructions. 
However, other instructions can also be used with the conditional execution suffi xes if they 
are inside an IF-THEN instruction block. (This concept is introduced in a later part of this 
chapter.) In those cases, the S suffi x and the conditional execution suffi xes can be used at the 
same time. Fifteen condition choices are available, as described later in this chapter.

 Assembler Language: Unifi ed Assembler Language

To support and get the best out of the Thumb-2 instruction set, the Unifi ed Assembler Language 
(UAL) was developed to allow selection of 16-bit and 32-bit instructions and to make it easier to 
port applications between ARM code and Thumb code by using the same syntax for both. (With 
UAL, the syntax of Thumb instructions is now the same as for ARM instructions.)

     ADD  R0, R1     ; R0 = R0 + R1, using Traditional Thumb syntax
     ADD  R0, R0, R1 ; Equivalent instruction using UAL syntax

The traditional Thumb syntax can still be used. One thing you need to be careful with is that 
with traditional Thumb instruction syntax, some instructions change the fl ags in APSR, even 
if the S suffi x is not used. However, when the UAL syntax is used, whether the instruction 
changes the fl ag depends on the S suffi x. For example:

     AND  R0, R1      ; Traditional Thumb syntax
     ANDS  R0, R0, R1 ; Equivalent UAL syntax (S suffi x is added)

With the new Thumb-2 instruction support, some of the operations can be handled by either a 
Thumb instruction or a Thumb-2 instruction. For example, R0 � R0 � 1 can be implemented 
as a 16-bit Thumb instruction or a 32-bit Thumb-2 instruction. With UAL, you can specify 
which instruction you want by adding suffi xes:

     ADDS   R0, #1  ; Use 16-bit Thumb instruction by default
; for smaller size

     ADDS.N R0, #1 ; Use 16-bit Thumb instruction (N=Narrow)
     ADDS.W R0, #1 ; Use 32-bit Thumb-2 instruction (W=wide)

The .W (wide) suffi x specifi es a 32-bit instruction. If no suffi x is given, the assembler tool 
can choose either instruction but usually defaults to 16-bit Thumb code to get a smaller size. 

Suffi x Description
S Update APSR (fl ags); for example:

 ADDS R0, R1 ; this will update APSR

EQ , NE, LT, GT, and so on  Conditional execution; EQ � Equal, NE � Not Equal, LT � Less Than, 
GT � Greater Than, etc. For example:

 BEQ <Label> ; Branch if equal

Table 4.1 Suffi xes in Instructions
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Depending on tool support, you may also use the .N (narrow) suffi x to specify a 16-bit Thumb 
instruction.

Again, this syntax is for ARM assembler tools. Other assemblers might have slightly different 
syntax. If no suffi x is given, the assembler might chose the instruction for you, with the 
minimum code size.

In most cases, applications will be coded in C, and the C compilers will use 16-bit 
instructions if possible due to smaller code size. However, when the immediate data exceeds a 
certain range or when the operation can be better handled with a 32-bit Thumb-2 instruction, 
the 32-bit instruction will be used.

32-bit Thumb-2 instructions can be half word aligned. For example, you can have a 32-bit 
instruction located in a half word location:

0x1000 : LDR r0,[r1]   ; a 16-bit instructions (occupy 0x1000-0x1001)
0x1002 : RBIT.W r0      ; a 32-bit Thumb-2 instruction (occupy 

; 0x1002-0x1005)

Most of the 16-bit instructions can only access registers R0 to R7; 32-bit Thumb-2 instructions 
do not have this limitation. However, use of PC (R15) might not be allowed in some of the 
instructions. Refer to the ARM v7-M Architecture Application Level Reference Manual (Ref 2: 
section A4.6) if you need to fi nd out more detail in this area.

Instruction List

The supported instructions are listed in Tables 4.2–4.9. The complete details of each 
instruction are available in the ARM v7-M Architecture Application Level Reference Manual 
(Ref 2). There is also a summary of the supported instruction sets in Appendix A.

Table 4.2 16-Bit Data Processing Instructions

Instruction Function
ADC Add with carry

ADD Add

AND Logical AND

ASR Arithmetic shift right

BIC Bit clear (Logical AND one value with the logic inversion of another value)

CMN Compare negative (compare one data with two’s complement of another data and update
 fl ags)

CMP Compare (compare two data and update fl ags)
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Instruction Function
CPY Copy (available from architecture v6; move a value from one high or low register to 
 another high or low register)

EOR Exclusive OR

LSL Logical shift left

LSR Logical shift right

MOV Move (can be used for register-to-register transfers or loading immediate data)

MUL Multiply

MVN Move NOT (obtain logical inverted value)

NEG Negate (obtain two’s complement value)

ORR Logical OR

ROR Rotate right

SBC Subtract with carry

SUB Subtract

TST Test (use as logical AND; Z fl ag is updated but AND result is not stored)

REV Reverse the byte order in a 32-bit register (available from architecture v6)

REVH  Reverse the byte order in each 16-bit half word of a 32-bit register (available from 
architecture v6)

REVSH  Reverse the byte order in the lower 16-bit half word of a 32-bit register and sign extends 
the result to 32 bits. (available from architecture v6)

SXTB Signed extend byte (available from architecture v6)

SXTH Signed extend half word (available from architecture v6)

UXTB Unsigned extend byte (available from architecture v6)

UXTH Unsigned extend half word (available from architecture v6)

Instruction Function
B Branch

B<cond> Conditional branch

BL Branch with link; call a subroutine and store the return address in LR

BLX Branch with link and change state (BLX <reg> only)1

CBZ Compare and branch if zero (architecture v7)

CBNZ Compare and branch if nonzero (architecture v7)

IT IF-THEN (architecture v7)

Table 4.3 16-Bit Branch Instructions

1  BLX with immediate is not supported because it will always try to change to the ARM state, which is not supported 
in the Cortex-M3. Attempts to use BLX <reg> to change to the ARM state will also result in a fault exception.

Table 4.2 (Continued)
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Table 4.4 16-Bit Load and Store Instructions

Instruction Function
LDR Load word from memory to register

LDRH Load half word from memory to register

LDRB Load byte from memory to register

LDRSH Load half word from memory, sign extend it, and put it in register

LDRSB Load byte from memory, sign extend it, and put it in register

STR Store word from register to memory

STRH Store half word from register to memory

STRB Store byte from register to memory

LDMIA Load multiple increment after

STMIA Store multiple increment after

PUSH Push multiple registers

POP Pop multiple registers

Table 4.5 Other 16-Bit Instructions

Instruction Function
SVC System service call

BKPT Breakpoint; if debug is enabled, will enter debug mode (halted), or if debug 
 monitor exception is enabled, will invoke the debug exception; otherwise it will 
 invoke a fault exception

NOP No operation

CPSIE Enable PRIMASK (CPSIE i)/FAULTMASK (CPSIE f ) register (set the register to 0)

CPSID Disable PRIMASK (CPSID i)/ FAULTMASK (CPSID f ) register (set the register to 1)

Table 4.6 32-Bit Data Processing Instructions

Instruction Function
ADC Add with carry

ADD Add

ADDW Add wide (#immed_12)

AND Logical AND

ASR Arithmetic shift right

BIC Bit clear (logical AND one value with the logic inversion of another value)

BFC Bit fi eld clear

BFI Bit fi eld insert
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Instruction Function
CMN Compare negative (compare one data with two’s complement of another data
 and update fl ags)

CMP Compare (compare two data and update fl ags)

CLZ Count lead zero

EOR Exclusive OR

LSL Logical shift left

LSR Logical shift right

MLA Multiply accumulate

MLS Multiply and subtract

MOV Move

MOVW Move wide (write a 16-bit immediate value to register)

MOVT Move top (write an immediate value to the top half word of destination reg)

MVN Move negative

MUL Multiply

ORR Logical OR

ORN Logical OR NOT

RBIT Reverse bit

REV Byte reserve word

REVH/REV16 Byte reverse packed half word

REVSH Byte reverse signed half word

ROR Rotate right register

RSB Reverse subtract

RRX Rotate right extended

SBFX Signed bit fi eld extract

SDIV Signed divide

SMLAL Signed multiply accumulate long

SMULL Signed multiply long

SSAT Signed saturate

SBC Subtract with carry

SUB Subtract

SUBW Subtract wide (#immed_12)

SXTB Sign extend byte

TEQ Test equivalent (use as logical exclusive OR; fl ags are updated but result is not 
 stored)

(Continued)

Table 4.6 (Continued)
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Table 4.7 32-Bit Load and Store Instructions

Instruction Function
LDR Load word data from memory to register

LDRB Load byte data from memory to register

LDRH Load half word data from memory to register

LDRSB Load byte data from memory, sign extend it, and put it to register

LDRSH Load half word data from memory, sign extend it, and put it to register

LDM Load multiple data from memory to registers

LDRD Load double word data from memory to registers

STR Store word to memory

STRB Store byte data to memory

STRH Store half word data to memory

STM Store multiple words from registers to memory

STRD Store double word data from registers to memory

PUSH Push multiple registers

POP Pop multiple registers

Table 4.8 32-Bit Branch Instructions

Instruction Function
B Branch

BL Branch and link

TBB Table branch byte; forward branch using a table of single byte offset

TBH Table branch half word; forward branch using a table of half word offset

Instruction Function
TST Test (use as logical AND; Z fl ag is updated but AND result is not stored)

UBFX Unsigned bit fi eld extract

UDIV Unsigned divide

UMLAL Unsigned multiply accumulate long

UMULL Unsigned multiply long

USAT Unsigned saturate

UXTB Unsigned extend byte

UXTH Unsigned extend half word

Table 4.6 (Continued)
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Instruction Function
LDREX Exclusive load word

LDREXH Exclusive load half word

LDREXB Exclusive load byte

STREX Exclusive store word

STREXH Exclusive store half word

STREXB Exclusive store byte

CLREX Clear the local exclusive access record of local processor

MRS Move special register to general-purpose register

MSR Move to special register from general-purpose register

NOP No operation

SEV Send event

WFE Sleep and wake for event

WFI Sleep and wake for interrupt

ISB Instruction synchronization barrier

DSB Data synchronization barrier

DMB Data memory barrier

Table 4.9 Other 32-Bit Instructions

Unsupported Instruction Function
BLX label This is branch with link and exchange state. In a format with immediate data, 
 BLX always changes to ARM state. Since the Cortex-M3 does not support the 
 ARM state, instructions like this one that attempt to switch to the ARM state 
 will result in a fault exception called usage fault.

SETEND This Thumb instruction, introduced in architecture v6, switches the endian 
 confi guration during run time. Since the Cortex-M3 does not support dynamic 
 endian, using the SETEND instruction will result in a fault exception.

Table 4.10 Unsupported Thumb Instructions for Traditional ARM Processors

Unsupported Instructions

A number of Thumb instructions are not supported in the Cortex-M3; they are presented in 
Table 4.10.

A number of instructions listed in the ARM v7-M Architecture Application Level Reference 
Manual are not supported in the Cortex-M3. ARM v7-M architecture allows Thumb-2 
coprocessor instructions, but the Cortex-M3 processor does not have any coprocessor support. 
Therefore, executing the coprocessor instructions shown in Table 4.11 will result in a fault 
exception (usage fault with NOCP fl ag in NVIC set to 1).
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Table 4.11 Unsupported Coprocessor Instructions

Unsupported Instruction Function
MCR Move to coprocessor from ARM processor

MCR2 Move to coprocessor from ARM processor

MCRR Move to coprocessor from two ARM register

MRC Move to ARM register from coprocessor

MRC2 Move to ARM register from coprocessor

MRRC Move to two ARM registers from coprocessor

LDC Load coprocessor; load memory data from a sequence of consecutive 
 memory addresses to a coprocessor

STC Store coprocessor; stores data from a coprocessor to a sequence of 
 consecutive memory addresses

Some of the Change Process State (CPS) instructions are also not supported in the Cortex-M3 
(see Table 4.12). This is because the PSR defi nition has changed, so some bits defi ned in the 
ARM architecture v6 are not available in the Cortex-M3.

Table 4.12 Unsupported Change Process State (CPS) Instructions

Unsupported Instruction Function
CPS<IE|ID>.W A There is no A bit in the Cortex-M3

CPS.W #mode There is no mode bit in the Cortex-M3 PSR

Table 4.13 Unsupported Hint Instructions

Unsupported Instruction Function
DBG A hint instruction to debug and trace system.

PLD  Preload data. This is a hint instruction for cache memory. However, since there 
is no cache in the Cortex-M3 processor, this instruction behaves as NOP.

PLI  Preload instruction. This is a hint instruction for cache memory. However, since 
there is no cache in the Cortex-M3 processor, this instruction behaves as NOP.

YIELD  A hint instruction to allow multithreading software to indicate to hardware that it 
is doing a task that can be swapped out to improve overall system performance.

In addition, the hint instructions shown in Table 4.13 will behave as NOP in the Cortex-M3.

All other undefi ned instructions, when executed, will cause the usage fault exception to 
take place.
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Instruction Descriptions

Here we introduce some of the commonly used syntax for ARM assembly code. Some of the 
instructions have various options such as barrel shifter; these will not be fully covered in this 
chapter.

Assembler Language: Moving Data

One of the most basic functions in a processor is transfer of data. In the Cortex-M3, data 
transfers can be of one of the following types:

• Moving data between register and register

• Moving data between memory and register

• Moving data between special register and register

• Moving an immediate data value into a register

The command to move data between registers is MOV (move). For example, moving data 
from register R3 to register R8 looks like this:

     MOV R8, R3

Another instruction can generate the negative value of the original data; it is called MVN 
(move negative).

The basic instructions for accessing memory are Load and Store. Load (LDR) transfers data 
from memory to registers, and Store transfers data from registers to memory. The transfers can 
be in different data sizes (byte, half word, word, and double word), as outlined in Table 4.14.

Multiple Load and Store operations can be combined into single instructions called LDM 
(Load Multiple) and STM (Store Multiple), as outlined in Table 4.15.

Table 4.14 Commonly Used Memory Access Instructions

Example Description
LDRB Rd, [Rn, #offset] Read byte from memory location Rn � offset

LDRH Rd, [Rn, #offset] Read half-word from memory location Rn � offset

LDR  Rd, [Rn, #offset] Read word from memory location Rn � offset

LDRD Rd1,Rd2, [Rn, #offset] Read double word from memory location Rn � offset

STRB Rd, [Rn, #offset] Store byte to memory location Rn � offset

STRH Rd, [Rn, #offset] Store half word to memory location Rn � offset

STR  Rd, [Rn, #offset] Store word to memory location Rn � offset

STRD Rd1,Rd2, [Rn, #offset] Store double word to memory location Rn � offset
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The exclamation mark (!) in the instruction specifi es whether the register Rd should be 
updated after the instruction is completed. For example, if R8 equals 0x8000:

     STMIA.W  R8!, {R0-R3}  ; R8 changed to 0x8010 after store
; (increment by 4 words)

     STMIA.W  R8 , {R0-R3} ; R8 unchanged after store

ARM processors also support memory accesses with pre-indexing and post-indexing. For pre-
indexing, the register holding the memory address is adjusted. The memory transfer then takes 
place with the updated address. For example:

     LDR.W  R0,[R1, #offset]!  ; Read memory[R1+offset], with R1 
; update to R1+offset

The use of the ! indicates the update of base register R1. The ! is optional; without it, the 
instruction would be just a normal memory transfer with offset from a base address. The 
pre-indexing memory access instructions include load and store instructions of various 
transfer sizes (see Table 4.16).

Table 4.15 Multiple Memory Access Instructions

Example Description
LDMIA Rd!,<reg list>  Read multiple words from memory location specifi ed by Rd. Address 
 Increment After (IA) each transfer (16-bit Thumb instruction).

STMIA Rd!,<reg list>  Store multiple words to memory location specifi ed by Rd. Address 
 Increment After (IA) each transfer (16-bit Thumb instruction).

LDMIA.W Rd(!),<reg list> Read multiple words from memory location specifi ed by Rd. Address 
  increment after each read (.W specifi ed it is a 32-bit Thumb-2 instruction).

LDMDB.W Rd(!),<reg list> Read multiple words from memory location specifi ed by Rd. Address 
  Decrement Before (DB) each read (.W specifi ed it is a 32-bit Thumb-2 

instruction).

STMIA.W Rd(!),<reg list> Write multiple words to memory location specifi ed by Rd. Address 
  increment after each read (.W specifi ed it is a 32-bit Thumb-2 

instruction).

STMDB.W Rd(!),<reg list>  Write multiple words to memory location specifi ed by Rd. Address 
Decrement Before each read (.W specifi ed it is a 32-bit Thumb-2 
instruction).

Table 4.16 Examples of Pre-Indexing Memory Access Instructions

Example Description
LDR.W   Rd,[Rn, #offset]! Pre-indexing load instructions for various sizes (word, byte, 
LDRB.W  Rd,[Rn, #offset]! half word, and double word)
LDRH.W  Rd,[Rn, #offset]!

LDRD.W  Rd1,Rd2,[Rn, #offset]!

LDRSB.W Rd,[Rn, #offset]! Pre-indexing load instructions for various sizes with sign extend
LDRSH.W Rd,[Rn, #offset]! (byte, half word)
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Post-indexing memory access instructions carry out the memory transfer using the base 
address specifi ed by the register and then update the address register afterward. For example:

LDR.W R0,[R1], #offset  ; Read memory[R1], with R1 
; updated to R1+offset

When a post-indexing instruction is used, there is no need to use the ! sign, because all post-
indexing instructions update the base address register, whereas in pre-indexing you might 
choose whether to update the base address register or not.

Similarly to pre-indexing, post-indexing memory access instructions are available for different 
transfer sizes (see Table 4.17).

Table 4.17 Examples of Post-Indexing Memory Access Instructions

Example Description
LDR.W   Rd,[Rn], #offset Post-indexing load instructions for various sizes (word, byte, 
LDRB.W  Rd,[Rn], #offset half word, and double word)

LDRH.W  Rd,[Rn], #offset

LDRD.W  Rd1,Rd2,[Rn], #offset

LDRSB.W Rd,[Rn], #offset Post-indexing load instructions for various sizes with sign 
LDRSH.W Rd,[Rn], #offset extend (byte, half word)

STR.W   Rd,[Rn], #offset Post-indexing store instructions for various sizes (word, byte, 
STRB.W  Rd,[Rn], #offset half word, and double word)

STRH.W  Rd,[Rn], #offset

STRD.W  Rd1,Rd2,[Rn], #offset

Two other types of memory operation are stack PUSH and stack POP. For example:

     PUSH {R0, R4-R7, R9}  ; Push R0, R4, R5, R6, R7, R9 into
; stack memory

     POP  {R2,R3}         ; Pop R2 and R3 from stack

Usually a PUSH instruction will have a corresponding POP with the same register list, but this 
is not always necessary. For example, a common exception is when POP is used as a function 
return:

     PUSH {R0-R3, LR}  ; Save register contents at beginning of 
; subroutine

     ....             ; Processing
     POP {R0-R3, PC}  ; restore registers and return

Table 4.16 (Continued)

Example Description

STR.W   Rd,[Rn, #offset]!  Pre-indexing store instructions for various sizes (word, byte, 
STRB.W  Rd,[Rn, #offset]! half word, and double word)
STRH.W  Rd,[Rn, #offset]!

STRD.W  Rd1,Rd2,[Rn, #offset]!
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In this case, instead of popping the LR register back and then branching to the address in LR, 
we POP the address value directly in the program counter.

As mentioned in Chapter 3, the Cortex-M3 has a number of special registers. To access these 
registers, we use the instructions MRS and MSR. For example:

     MRS R0, PSR     ; Read Processor status word into R0
     MSR CONTROL, R1 ; Write value of R1 into control register

Unless you’re accessing the APSR, you can use MSR or MRS to access other special registers 
only in privileged mode.

Moving immediate data into a register is a common thing to do. For example, you might want 
to access a peripheral register, so you need to put the address value into a register beforehand. 
For small values (8 bits or less), you can use MOV (move). For example:

     MOV  R0, #0x12 ; Set R0 to 0x12

For a larger value (over 8 bits), you might need to use a Thumb-2 move instruction. For 
example:

     MOVW.W  R0,#0x789A ; Set R0 to 0x789A

Or if the value is 32-bit, you can use two instructions to set the upper and lower halves:

     MOVW.W  R0,#0x789A ; Set R0 lower half to 0x789A
     MOVT.W  R0,#0x3456  ; Set R0 upper half to 0x3456. Now 

; R0=0x3456789A

Alternatively, you can also use LDR (a pseudo instruction provided in ARM assembler). For 
example:

     LDR  R0, =0x3456789A

This is not a real assembler command, but the ARM assembler will convert it into a PC 
relative load instruction to produce the required data. To generate 32-bit immediate data, using 
LDR is recommended rather than the MOVW.W and MOVT.W combination because it gives 
better readability and the assembler might be able to reduce the memory being used if the 
same immediate data are reused in several places of the same program.

LDR and ADR Pseudo Instructions

Both LDR and ADR pseudo instructions can be used to set registers to a program address 
value. They have different syntaxes and behaviors. For LDR, if the address is a program 
address value, it will automatically set the LSB to 1. For example:

     LDR  R0, �address1 ; R0 set to 0x4001
     ...
address1
0x4000: MOV  R0, R1 ; address1 contains program code
     ...
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You will fi nd that the LDR instruction will put 0x4001 into R1; the LSB is set to 1 to indicate 
that it is Thumb code. If address1 is a data address, LSB will not be changed. For example:

     LDR R0, =address1 ; R0 set to 0x4000
     ...
address1
0x4000: DCD 0x0 ; address1 contains data
     ...

For ADR, you can load the address value of a program code into a register without setting the 
LSB automatically. For example:

     ADR R0, address1
     ...
address1
0x4000: MOV R0, R1 ; address1 contains program code
     ...

You will get 0x4000 in the ADR instruction. Note that there is no equal sign (�) in the ADR 
statement.

LDR obtains the immediate data by putting the data in the program code and uses a PC 
relative load to get the data into the register. ADR tries to generate the immediate value by 
adding or subtracting instructions (for example, based on the current PC value). As a result, it 
is not possible to create all immediate values using ADR, and the target address label must be 
in a close range. However, using ADR can generate smaller code sizes compared to LDR.

Assembler Language: Processing Data

The Cortex-M3 provides many different instructions for data processing. A few basic ones are 
introduced here. Many data operation instructions can have multiple instruction formats. For 
example, an ADD instruction can operate between two registers or between one register and 
an immediate data value:

     ADD   R0, R1     ; R0 = R0+R1
     ADD   R0, #0x12  ; R0 = R0 + 0x12
     ADD.W R0, R1, R2 ; R0 = R1+R2

These are all ADD instructions, but they have different syntaxes and binary coding.

When 16-bit Thumb code is used, an ADD instruction changes the fl ags in the PSR. However, 
32-bit Thumb-2 code can either change a fl ag or keep it unchanged. To separate the two 
different operations, the S suffi x should be used if the following operation depends on the 
fl ags:

     ADD.W  R0, R1, R2 ; Flag unchanged
     ADDS.W R0, R1, R2 ; Flag change
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Aside from ADD instructions, the arithmetic functions that the Cortex-M3 supports include 
SUB (subtract), MUL (multiply), and UDIV/SDIV (unsigned and signed divide). Table 4.18 
shows some of the most commonly used arithmetic instructions.

Table 4.18 Examples of Arithmetic Instructions

Instruction Operation
ADD Rd, Rn, Rm ; Rd = Rn + Rm ADD operation

ADD Rd, Rm     ; Rd = Rd + Rm

ADD Rd, #immed ; Rd = Rd + #immed

ADC Rd, Rn, Rm ; Rd = Rn + Rm + carry ADD with carry

ADC Rd, Rm     ; Rd = Rd + Rm + carry

ADC Rd, #immed ; Rd = Rd + #immed +

 ; carry

ADDW Rd, Rn,#immed ; Rd = Rn + #immed ADD register with 12-bit immediate value

SUB  Rd, Rn, Rm    ; Rd = Rn – Rm SUBTRACT

SUB  Rd, #immed    ; Rd = Rd – #immed

SUB  Rd, Rn,#immed ; Rd = Rn –#immed

SBC   Rd, Rm         ; Rd = Rd - Rm – SUBTRACT with borrow (carry)

                     ; carry fl ag

SBC.W Rd, Rn, #immed ; Rd = Rn – #immed -

                     ; carry fl ag

SBC.W Rd, Rn, Rm     ; Rd = Rn – Rm –

                     ; carry fl ag

RSB.W Rd, Rn, #immed ; Rd = #immed –Rn Reverse subtract

RSB.W Rd, Rn, Rm     ; Rd = Rm - Rn

MUL   Rd, Rm         ; Rd = Rd * Rm Multiply

MUL.W Rd, Rn, Rm     ; Rd = Rn * Rm

UDIV Rd, Rn, Rm      ; Rd = Rn /Rm Unsigned and signed divide

SDIV Rd, Rn, Rm      ; Rd = Rn /Rm

The Cortex-M3 also supports 32-bit multiply instructions and multiply accumulate instructions 
that give 64-bit results. These instructions support signed or unsigned values (see Table 4.19).

Instruction Operation
SMULL RdLo, RdHi, Rn, Rm 32-bit multiply instructions for signed values

 ;{RdHi,RdLo} = Rn * Rm

SMLAL RdLo, RdHi, Rn, Rm

 ;{RdHi,RdLo} += Rn * Rm

Table 4.19 32-bit Multiply Instructions
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Another group of data processing instructions are the logical operations instructions and 
logical operations such as AND, ORR (or), and shift and rotate functions. Table 4.20 shows 
some of the most commonly used logical instructions.

Table 4.20 Logic Operation Instructions

Instruction Operation
AND   Rd, Rn       ; Rd = Rd & Rn Bitwise AND

AND.W Rd, Rn,#immed; Rd = Rn & #immed

AND.W Rd, Rn, Rm   ; Rd = Rn & Rd

ORR   Rd, Rn       ; Rd = Rd | Rn Bitwise OR

ORR.W Rd, Rn,#immed; Rd = Rn | #immed

ORR.W Rd, Rn, Rm   ; Rd = Rn | Rd

BIC   Rd, Rn       ; Rd = Rd & (~Rn) Bit clear

BIC.W Rd, Rn,#immed; Rd = Rn &(~#immed)

BIC.W Rd, Rn, Rm   ; Rd = Rn &(~Rd)

ORN.W Rd, Rn,#immed; Rd = Rn |(~#immed) Bitwise OR NOT

ORN.W Rd, Rn, Rm   ; Rd = Rn |(~Rd)

EOR   Rd, Rn       ; Rd = Rd ^ Rn Bitwise Exclusive OR

EOR.W Rd, Rn,#immed; Rd = Rn | #immed

EOR.W Rd, Rn, Rm   ; Rd = Rn | Rd

The Cortex-M3 provides rotate and shift instructions. In some cases, the rotate operation can 
be combined with other operations (for example, in memory address offset calculation for 
load/store instructions). For standalone rotate/shift operations, the instructions shown in 
Table 4.21 are provided.

Instruction Operation
ASR   Rd, Rn,#immed; Rd = Rn >> immed Arithmetic shift right

ASR   Rd, Rn       ; Rd = Rd >> Rn

ASR.W Rd, Rn, Rm   ; Rd = Rn >> Rm

Table 4.21 Shift and Rotate Instructions

(Continued)

Instruction Operation
UMULL RdLo, RdHi, Rn, Rm 32-bit multiply instructions for unsigned values

      ;{RdHi,RdLo} = Rn * Rm

UMLAL RdLo, RdHi, Rn, Rm

      ;{RdHi,RdLo} += Rn * Rm

Table 4.19 (Continued)
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The rotate and shift operations can also update the carry fl ag if the S suffi x is used (and always 
update the carry fl ag if the 16-bit Thumb code is used). See Figure 4.1.

Instruction Operation
LSL   Rd, Rn,#immed; Rd = Rn << immed Logical shift left

LSL   Rd, Rn       ; Rd = Rd << Rn

LSL.W Rd, Rn, Rm   ; Rd = Rn << Rm

LSR   Rd, Rn,#immed; Rd = Rn >> immed Logical shift right

LSR   Rd, Rn       ; Rd = Rd >> Rn

LSR.W Rd, Rn, Rm   ; Rd = Rn >> Rm

ROR   Rd, Rn       ; Rd rot by Rn Rotate right

ROR.W Rd, Rn, Rm   ; Rd = Rn rot by Rm

RRX.W Rd, Rn       ; {C, Rd} = {Rn, C} Rotate right extended

Logical Shift Left (LSL)

Logical Shift Right (LSR)

Rotate Right (ROR)

Arithmetic Shift Right (ASR)

Rotate Right Extended (RRX)

C Register 0

CRegister0

CRegister

CRegister

CRegister

Figure 4.1 Shift and Rotate Instructions

If the shift or rotate operation shifts the register position by multiple bits, the value of the 
carry fl ag C will be the last bit that shifts out of the register.

Why Is There Rotate Right But No Rotate Left?

The rotate left operation can be replaced by a rotate right operation with a different rotate 
offset. For example, a rotate left by 4-bit operation can be written as a rotate right by 28-
bit instruction, which gives the same result and takes the same amount of time to execute.

Table 4.21 (Continued)
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For conversion of signed data from byte or half word to word, the Cortex-M3 provides the two 
instructions shown in Table 4.22.

Another group of data processing instructions is used for reversing data bytes in a register (see 
Table 4.23). These instructions are usually used for conversion between little endian and big 
endian data.

Table 4.23 Data Reverse Ordering Instructions

Instruction Operation
REV.W    Rd, Rn ; Rd = rev(Rn) Reverse bytes in word

REV16.W <Rd>, <Rn> ; Rd = rev16(Rn) Reverse bytes in each half word

REVSH.W <Rd>, <Rn> ; Rd = revsh(Rn) Reverse bytes in bottom half word and sign extend 
 the result

REV.W
(Reverse bytes in word)

Bit
[7:0]

Bit
[15:8]

Bit
[23:16]

Bit
[31:24]

REV16.W
(Reverse bytes in half word)

REVSH.W
(Reverse bytes in bottom

half word and sign extend results)

Sign extend

Figure 4.2 Reverse Operations

The last group of data processing instructions is for bit fi eld processing. They include the 
instructions shown in Table 4.24. Examples of these instructions are provided in a later part of 
this chapter.

Table 4.22 Sign Extend Instructions

Instruction Operation
SXTB.W Rd, Rm ; Rd = signext(Rn[7:0]) Sign extend byte data into word

SXTH.W Rd, Rm ; Rd = signext(Rn[15:0]) Sign extend half word data into word

CH04-H8534.indd   65CH04-H8534.indd   65 7/19/07   1:30:08 PM7/19/07   1:30:08 PM



Chapter 4

66

Assembler Language: Call and Unconditional Branch

The most basic branch instructions are:

 B  label ; Branch to a labeled address
 BX reg   ; Branch to an address specifi ed by a register

In BX instructions, the LSB of the value contained in the register determines the next state 
(Thumb/ARM) of the processor. In the Cortex-M3, since it is always in Thumb state, this bit 
should be set to 1. If it is zero, the program will cause a usage fault exception because it is 
trying to switch the processor into ARM state.

To call a function, the branch and link instructions should be used:

 BL  label     ; Branch to a labeled address and save return 
; address in LR

 BLX reg       ; Branch to an address specifi ed by a register and 
; save return
; address in LR.

With these instructions, the return address will be stored in the link register (LR) and the 
function can be terminated using BX LR, which causes program control to return to the 
calling process. However, when using BLX, make sure that the LSB of the register is 1. 
Otherwise the processor will produce a fault exception because it is an attempt to switch to the 
ARM state.

You can also carry out a branch operation using MOV instructions and LDR instructions. For 
example:

 MOV R15,  R0     ; Branch to an address inside R0
 LDR R15, [R0]     ; Branch to an address in memory location 

; specifi ed by R0
 POP {R15}         ; Do a stack pop operation, and change the 

; program counter value
                       ; to the result value.

When using these methods to carry out branches, you also need to make sure that the LSB of 
the new program counter value is 0x1. Otherwise a usage fault exception will be generated 

Table 4.24 Bit Field Processing and Manipulation Instructions

Instruction Operation
BFC.W  Rd, Rn, #<width> Clear bit fi eld within a register

BFI.W  Rd, Rn, #<lsb>, #<width> Insert bit fi eld to a register

CLZ.W  Rd, Rn Count leading zero

RBIT.W Rd, Rn Reverse bit order in register

SBFX.W Rd, Rn, #<lsb>, #<width> Copy bit fi eld from source and sign extend it

UBFX.W Rd, Rn, #<lsb>, #<width> Copy bit fi eld from source register
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because it will try to switch the processor to ARM mode, which is not allowed in the 
Cortex-M3.

Save the LR if You Need to Call a Subroutine

The BL instruction will destroy the current content of your LR register. So, if your 
program code needs the LR register later, you should save your LR before you use BL. 
The common method is to push the LR to stack in the beginning of your subroutine. 
For example:

main
 ...
 BL functionA
 ...
functionA
 PUSH {LR}  ; Save LR content to stack
 ...
 BL functionB
 ...
 POP  {PC}  ; Use stacked LR content to return to main
functionB
 PUSH {LR}
 ...
 POP  {PC}  ; Use stacked LR content to return to functionA

In addition, if the subroutine you call is a C function, you might also need to save the 
contents in R0–R3 and R12 if these values will be needed at a later stage. According to 
AAPCS (Ref 5), the contents in these registers could be changed by a C function.

Assembler Language: Decisions and Conditional Branches

Most conditional branches in ARM processors use fl ags in the Application Program Status 
Register (APSR) to determine whether a branch should be carried out. In the APSR, there are 
fi ve fl ag bits; four of them are used for branch decisions (see Table 4.25).

Flag PSR Bit Description
N 31 Negative fl ag (last operation result is a negative value)

Z 30 Zero (last operation result returns a zero value)

C 29 Carry (last operation returns a carry out or borrow)

V 28 Overfl ow (last operation results in an overfl ow)

Table 4.25 Flag bits in APSR That Can Be Used for Conditional Branches
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There is another fl ag bit at bit[27], called the Q fl ag. It is for saturation math operations and is 
not used for conditional branches.

Flags in ARM Processors

Often, data processing instructions change the fl ags in the PSR. The fl ags might be used 
for branch decisions, or they can be used as part of the input for the next instruction. 
The ARM processor normally contains at least the Z, N, C, and V fl ags, which are 
updated by execution of data processing instructions:

• Z (Zero) fl ag: This fl ag is set when the result of an instruction has a zero value or 
when a comparison of two data returns an equal result.

• N (Negative) fl ag: This fl ag is set when the result of an instruction has a negative 
value (bit 31 is 1).

• C (Carry) fl ag: This fl ag is for unsigned data processing—for example, in add 
(ADD) it is set when an overfl ow occurs; in subtract (SUB) it is set when a borrow 
did not occur (borrow is the invert of carry).

• V (Overfl ow) fl ag: This fl ag is for signed data processing; for example, in an add 
(ADD), when two positive values added together produce a negative value, or 
when two negative values added together produce a positive value.

These fl ags can also have special results when used with shift and rotate instructions. 
Refer to the ARM v7-M Architecture Application Level Reference Manual (Ref 2) for details.

Symbol Condition Flag
EQ Equal Z set

NE Not equal Z clear

CS/HS Carry set/unsigned higher or same C set

CC/LO Carry clear/unsigned lower C clear

MI Minus/negative N set

PL Plus/positive or zero N clear

VS Overfl ow V set

VC No overfl ow V clear

HI Unsigned higher C set and Z clear

LS Unsigned lower or same C clear or Z set

GE Signed greater than or equal N set or V set, or
  N clear and V clear (N �� V)

Table 4.26 Conditions for Branches or Other Conditional Operations
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With combinations of the four fl ags (N, Z, C, and V), 15 branch conditions are defi ned (see 
Table 4.26). Using these conditions, branch instructions can be written as, for example:

     BEQ label ; Branch to address ‘label’ if Z fl ag is set

You can also use the Thumb-2 version if your branch target is further away. For example:

     BEQ.W label ; Branch to address ‘label’ if Z fl ag is set

The defi ned branch conditions can also be used in IF-THEN-ELSE structures. For example:

     CMP R0, R1   ; Compare R0 and R1
     ITTEE GT      ; If R0 > R1 Then (fi rst 2 statements execute

; if true,
; other 2 statements execute if false)

     MOVGT R2, R0 ;      R2 = R0
     MOVGT R3, R1 ;      R3 = R1
     MOVLE R2, R0 ; Else R2 = R1
     MOVLE R3, R1 ;      R3 = R0

PSR fl ags can be affected by the following:

• 16-bit ALU instructions

• 32-bit (Thumb-2) ALU instructions with the S suffi x; for example, ADDS.W

• Compare (e.g., CMP) and Test (e.g., TST, TEQ)

• Write to APSR/PSR directly

Most of the 16-bit Thumb arithmetic instructions affect the N, Z, C, and V fl ags. With 32-bit 
Thumb-2 instructions, the ALU operation can either change fl ags or not change fl ags. For 
example:

 ADDS.W  R0, R1, R2  ;  This 32-bit Thumb-2 instruction update fl ag
 ADD.W   R0, R1, R2   ; This 32-bit Thumb-2 instruction do not

; update fl ag
 ADDS     R0, R1      ; This 16-bit Thumb instruction update fl ag
 ADD     R0, #0x1    ; This 16-bit Thumb instruction update fl ag

Symbol Condition Flag

LT Signed less than N set and V clear, or
  N clear and V set (N !� V)

GT Signed greater than Z clear, and either N set and V set, or
  N clear and V clear (Z �� 0, N �� V)

LE Signed less than or equal Z set, or N set and V clear, or
  N clear and V set (Z �� 1 or N !� V)

AL Always (unconditional) —

Table 4.26 (Continued)
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Be careful when changing an ALU instruction between Thumb and Thumb-2. Without the 
S suffi x in the instruction, a Thumb instruction might update a fl ag, whereas a Thumb-2 
instruction does not, so you can end up with different results. To make sure that the code 
works with different tools, you should always use the S suffi x if the fl ags need to be updated 
for conditional operations such as conditional branches.

The CMP (Compare) instruction subtracts two values and updates the fl ags (just like SUBS), 
but the result is not stored in any registers. CMP can have the following formats:

 CMP R0, R1    ; Calculate R0 – R1 and update fl ag
 CMP R0, #0x12 ; Calculate R0 – 0x12 and update fl ag

A similar instruction is the CMN (Compare Negative). It compares one value to the negative 
(two’s complement) of a second value; the fl ags are updated, but the result is not stored in any 
registers:

 CMN R0, R1    ; Calculate R0 – (-R1) and update fl ag
 CMN R0, #0x12 ; Calculate R0 – (-0x12) and update fl ag

The TST (Test) instruction is more like the AND instruction. It ANDs two values and updates 
the fl ags. However, the result is not stored in any register. Similarly to CMP, it has two input 
formats:

 TST R0, R1    ; Calculate R0 and R1 and update fl ag
 TST R0, #0x12 ; Calculate R0 and 0x12 and update fl ag

Assembler Language: Combined Compare and Conditional Branch

With ARM architecture v7-M, two new instructions are provided on the Cortex-M3 to supply 
a simple compare with zero and conditional branch operations. These are CBZ (Compare and 
Branch if Zero) and CBNZ (Compare and Branch if Nonzero).

The compare and branch instructions only support forward branches. For example:

 i = 5;
 while (i != 0 ){
 func1(); ; call a function
 i--;
 }

This can be compiled into:

 MOV  R0, #5        ; Set loop counter
loop1 CBZ  R0, loop1exit ; if loop counter = 0 then exit the loop
 BL   func1         ; call a function
 SUB  R0, #1        ; loop counter decrement
 B    loop1         ; next loop
loop1exit
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Assembler Language: Conditional Branches Using IT Instructions

The IT (IF-THEN) block is very useful for handling small conditional code. It avoids branch 
penalties because there is no change to program fl ow. It can provide a maximum of four 
conditionally executed instructions.

In IT instruction blocks, the fi rst line must be the IT instruction, detailing the choice of 
execution, followed by the condition it checks. The fi rst statement after the IT command must 
be TRUE-THEN-EXECUTE, which is always written as ITxxx, where T means THEN and 
E means ELSE. The second through fourth statements can be either THEN (true) or ELSE 
(false):

IT<x><y><z>  <cond>                    ; IT instruction (<x>, <y>, 
; <z> can be T or E)

instr1<cond>             <operands>    ; 1st instruction (<cond> 
; must be same as IT)

instr2<cond or not cond> <operands>    ; 2nd instruction (can be 
; <cond> or <!cond>

instr3<cond or not cond> <operands>    ; 3rd instruction (can be 
; <cond> or <!cond>

instr4<cond or not cond> <operands>    ; 4th instruction (can be 
; <cond> or <!cond>

If a statement is to be executed when <cond  > is false, the suffi x for the instruction must be 
the opposite of the condition. For example, the opposite of EQ is NE, the opposite of GT is 
LE, and so on. The following code shows an example of a simple conditional execution:

 if (R1<R2) then
 R2=R2-R1
 R2=R2/2
 else
 R1=R1-R2
 R1=R1/2

In assembly:

 CMP      R1, R2  ; If R1 < R2 (less then)
 ITTEE    LT  ; then execute instruction 1 and 2 
  ; (indicated by T)
  ; else execute instruction 3 and 4 
  ; (indicated by E)
 SUBLT.W  R2,R1  ; 1st instruction
 LSRLT.W  R2,#1  ; 2nd instruction
 SUBGE.W  R1,R2  ; 3rd instruction (notice the GE is 
  ; opposite of LT)
 LSRGE.W  R1,#1  ; 4th instruction

CH04-H8534.indd   71CH04-H8534.indd   71 7/19/07   1:30:10 PM7/19/07   1:30:10 PM



Chapter 4

72

You can have fewer than four conditionally executed instructions. The minimum is 1. You 
need to make sure the number of T and E occurrences in the IT instruction matches the 
number of conditionally executed instructions after the IT.

If an exception occurs during the IT instruction block, the execution status of the block will be 
stored in the stacked PSR (in the IT/ICI bit fi eld). So, when the exception handler completes 
and the IT block resumes, the rest of the instructions in the block can continue the execution 
correctly. In the case of using multicycle instructions (for example, multiple load and store) 
inside an IT block, if an exception takes place during the execution, the whole instruction 
must be completed before the exception is accepted.

Assembler Language: Instruction Barrier and Memory Barrier Instructions

The Cortex-M3 supports a number of barrier instructions. These instructions are needed as 
memory systems get more and more complex. In some cases, if memory barrier instructions 
are not used, race conditions could occur.

For example, if the memory map can be switched by a hardware register, after writing to the 
memory switching register you should use the DSB instruction. Otherwise, if the write to 
the memory switching register is buffered and takes a few cycles to complete, and the next 
instruction accesses the switched memory region immediately, the access could be using 
the old memory map. In some cases, this might result in an invalid access if the memory 
switching and memory access happen at the same time. Using DSB in this case will make sure 
that the write to the memory map switching register is completed before a new instruction is 
executed.

There are three barrier instructions in the Cortex-M3:

• DMB

• DSB

• ISB

These instructions are described in Table 4.27.

Instruction Description
DMB Data Memory Barrier; ensures that all memory accesses are completed before new 
 memory access is committed

DSB Data Synchronization Barrier; ensures that all memory accesses are completed before 
 next instruction is executed

ISB Instruction Synchronization Barrier; fl ushes the pipeline and ensures that all previous 
 instructions are completed before executing new instructions

Table 4.27 Barrier Instructions
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When you do a data write followed immediately by a read on a dual-port memory, if the 
memory write is buffered, the DMB instruction can be used to ensure the read gets the 
updated value.

The DSB and ISB instructions can be important for self-modifying code. For example, if a 
program changes its own program code, the next executed instruction should be based on the 
updated program. However, since the processor is pipelined, the modifi ed instruction location 
might have already been fetched. Using DSB and then ISB can ensure that the modifi ed 
program code is fetched again.

More detail about memory barriers can be found in the ARM v7-M Architecture Application 
Level Reference Manual (Ref 2).

Assembly Language: Saturation Operations

The Cortex-M3 supports two instructions that provide signed and unsigned saturation 
operations: SSAT and USAT (for signed data type and unsigned data type, respectively). 
Saturation is commonly used in signal processing—for example, in signal amplifi cation. 
When an input signal is amplifi ed, there is a chance that the output will be larger than the 
allowed output range. If the value is adjusted simply by removing the unused MSB, an 
overfl owed result will cause the signal waveform to be completely deformed (see Figure 4.3).

Amplify

Without
saturation

With
signed

saturation
 

Dynamic
Range 0

0

Figure 4.3 Signed Saturation Operation
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The saturation operation does not prevent the distortion of the signal, but at least the amount 
of distortion is greatly reduced in the signal waveform.

The instruction syntax of the SSAT and USAT instructions is outlined here and in Table 4.28:

• Rn: Input value

• Shift: Shift operation for input value before saturation; optional, can be #LSL N or 
#ASR N

• Immed: Bit position where the saturation is carried out

• Rd: Destination register

Besides the destination register, the Q-bit in the APSR can also be affected by the result. The 
Q fl ag is set if saturation takes place in the operation, and it can be cleared by writing to the 
APSR (see Table 4.29). For example, if a 32-bit signed value is to be saturated into a 16-bit 
signed value, the following instruction can be used:

 SSAT.W R1, #16, R0

Similarly, if a 32-bit signed value is to saturate into a 16-bit unsigned value, the following 
instruction can be used:

 USAT.W R1, #16, R0

This will provide a saturation feature that has the properties shown in Figure 4.4.

Table 4.29 Examples of Signed Saturation Results

Input (R0) Output (R1) Q Bit
0x00020000 0x00007FFF Set

0x00008000 0x00007FFF Set

0x00007FFF 0x00007FFF Unchanged

0x00000000 0x00000000 Unchanged

0xFFFF8000 0xFFFF8000 Unchanged

0xFFFF8001 0xFFFF8000 Set

0xFFFE0000 0xFFFF8000 Set

Instruction Description
SSAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for signed value

USAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for a signed value into an unsigned value

Table 4.28 Saturation Instructions
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For the preceding 16-bit saturation example instruction, the output values shown in Table 4.30 
can be observed.

Amplify
Dynamic
Range

With
Unsigned
Saturation

 

0 0 0

Figure 4.4 Unsigned Saturation Operation

Saturation instructions can also be used for data type conversions. For example, they can be 
used to convert a 32-bit integer value to 16-bit integer value. However, C compilers might 
not be able to directly use these instructions, so assembler functions (or embedded/inline 
assembler code) for the data conversion could be required.

Several Useful Instructions in the Cortex-M3

Several useful Thumb-2 instructions from the architecture v7 and v6 are introduced here.

MSR and MRS

These two instructions provide access to the special registers in the Cortex-M3. Here is the 
syntax of these instructions:

 MRS <Rn>, <SReg> ; Move from Special Register
 MSR <SReg>, <Rn> ; Write to Special Register

where <SReg > could be one of the options shown in Table 4.31.

Table 4.30 Examples of Unsigned Saturation Results

Input (R0) Output (R1) Q Bit
0x00020000 0x0000FFFF Set

0x00008000 0x00008000 Set

0x00007FFF 0x00007FFF Unchanged

0x00000000 0x00000000 Unchanged

0xFFFF8000 0x00000000 Set

0xFFFF8001 0x00000000 Set

0xFFFFFFFF 0x00000000 Set
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For example, the following code can be used to set up the Process Stack Pointer:

LDR R0,=0x20008000 ; new value for Process Stack Pointer (PSP)
MSR PSP, R0

Unless accessing the APSR, the MRS and MSR instructions can be used in privileged mode only. 
Otherwise the operation will be ignored, and the returned read data (if MRS is used) will be zero.

IF-THEN

The IF-THEN (IT) instructions allow up to four succeeding instructions (called an IT block) to 
be conditionally executed. They are in the following formats:

IT<x>         <cond>
IT<x><y>      <cond>
IT<x><y><z>   <cond>

where:

• <x > specifi es the execution condition for the second instruction

• <y > specifi es the execution condition for the third instruction

• <z > specifi es the execution condition for the fourth instruction

Symbol Description
IPSR Interrupt status register

EPSR Execution status register (read as zero)

APSR2 Flags from previous operation

IEPSR A composite of IPSR and EPSR

IAPSR A composite of IPSR and APSR

EAPSR A composite of EPSR and APSR

PSR A composite of APSR, EPSR and IPSR

MSP Main stack pointer

PSP Process stack pointer

PRIMASK Normal exception mask register

BASEPRI Normal exception priority mask register

BASEPRI_MAX Same as normal exception priority mask register, with conditional write
 (new priority level must be higher than the old level)

FAULTMASK Fault exception mask register (also disables normal interrupts)

CONTROL Control register

Table 4.31 Special Register Names for MRS and MSR Instructions

2 In older ARM Cortex-M3 documents, the APSR was called FPSR. If you are using older software development 
tools that were developed during the early stages of Cortex-M3 development, you might need to use the register 
name FPSR in your assembly code.
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• <cond > specifi es the base condition of the instruction block; the fi rst instruction 
following IT executes if <cond > is true

Each of <x >, <y >, and <z > can be either T (THEN) or E (ELSE), which refers to the base 
condition <cond >, whereas <cond > uses traditional syntax such as EQ, NE, GT, or the like.

Here is an example of IT use:

if (R0 equal R1) then {
  R3 = R4 + R5
  R3 = R3 / 2
  } else {
  R3 = R6 + R7
  R3 = R3 / 2
  }

This can be written as:

  CMP   R0, R1     ; Compare R0 and R1
  ITTEE EQ         ; If R0 equal R1, Then-Then-Else-Else
  ADDEQ R3, R4, R5 ; Add if equal
  ASREQ R3, R3, #1 ; Arithmetic shift right if equal
  ADDNE R3, R6, R7 ; Add if not equal
  ASRNE R3, R3, #1 ; Arithmetic shift right if not equal

CBZ and CBNZ

The compare and then branch if zero/nonzero instructions are useful for looping (for example, 
the WHILE loop in C). The syntax is:

 CBZ  <Rn>, <label>

or:

 CBNZ <Rn>, <label>

where label is a forward branch address. For example:

while (R0 != 0) {
    function1();
    }

This can be written as:

    ...
loop
    CBZ R0, loopexit
    BL  function1
    B   loop
  loopexit
  ...

Flags are not affected by this instruction.
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SDIV and UDIV

The syntax for signed and Unsigned divide instructions is:

 SDIV.W <Rd>, <Rn>, <Rm>
 UDIV.W <Rd>, <Rn>, <Rm>

The result is Rd � Rn/Rm. For example:

    LDR    R0,=300 ; Decimal 300
    MOV    R1,#5
    UDIV.W R2, R0, R1

This will give you an R2 result of 60 (0x3C).

You can set up the DIVBYZERO bit in the NVIC Confi guration Control Register so that 
when a divide by zero occurs, a fault exception (usage fault) takes place. Otherwise <Rd > 
will become 0 if a divide by zero takes place.

REV, REVH, and REVSH

REV reverses the byte order in a data word, and REVH reverses the byte order inside a half 
word. For example, if R0 is 0x12345678, in executing the following:

 REV  R1, R0
 REVH R2, R0

R1 will become 0x78563412, and R2 will be 0x34127856. REV and REVH are particularly 
useful for converting data between big endian and little endian.

REVSH is similar to REVH except that it only processes the lower half word, and then it sign 
extends the result. For example, if R0 is 0x33448899, running:

 REVSH R1, R0

R1 will become 0xFFFF9988.

RBIT

The RBIT instruction reverses the bit order in a data word. The syntax is:

 RBIT.W <Rd>, <Rn>

This instruction is very useful for processing serial bit streams in data communications. For 
example, if R0 is 0xB4E10C23 (binary value 1011_0100_1110_0001_0000_1100_0010_
0011), executing:

 RBIT.W R0, R1

R0 will become 0xC430872D (binary value 1100_0100_0011_0000_1000_0111_0010_1101).
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SXTB, SXTH, UXTB, and UXTH

The four instructions SXTB, SXTH, UXTB, and UXTH are used to extend a byte or half word 
data into a word. The syntax of the instructions is as follows:

 SXTB  <Rd>, <Rn>
 SXTH  <Rd>, <Rn>
 UXTB  <Rd>, <Rn>
 UXTH  <Rd>, <Rn>

For SXTB/SXTH, the data are sign extended using bit[7]/bit[15] of Rn. With UXTB and 
UXTH, the value is zero extended to 32-bit.

For example, if R0 is 0x55AA8765:

 SXTB R1,  R0  ; R1 = 0x00000065
 SXTH R1,  R0  ; R1 = 0xFFFF8765
 UXTB R1,  R0  ; R1 = 0x00000065
 UXTH R1,  R0  ; R1 = 0x00008765

BFC and BFI

BFC (Bit Field Clear) clears any number of adjacent bits in any position of a register. The 
syntax of the instruction is:

 BFC.W <Rd>, <#lsb>, <#width>

For example:

 LDR   R0,=0x1234FFFF
 BFC.W R0, #4, #8

This will give R0 � 0x1234F00F.

BFI (Bit Field Insert) copies any number of bits (#width) from one register to any location 
(#lsb) in another register. The syntax is:

 BFI.W <Rd>, <Rn>, <#lsb>, <#width>

For example:

 LDR   R0,=0x12345678
 LDR   R1,=0x3355AACC
 BFI.W R1, R0, #8, #16 ; Insert R0[15:0] to R1[23:8]

This will give R1 � 0x335678CC.

UBFX and SBFX

UBFX and SBFX are the Unsigned and Signed Bit Field Extract instructions. The syntax of 
the instructions is:

 UBFX.W <Rd>, <Rn>, <#lsb>, <#width>
 SBFX.W <Rd>, <Rn>, <#lsb>, <#width>
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UBFX extracts a bit fi eld from a register starting from any location (specifi ed by #lsb) with any 
width (specifi ed by #width), zero extends it, and puts it in the destination register. For example:

 LDR    R0,=0x5678ABCD
 UBFX.W R1, R0, #4, #8

This will give R1 � 0x000000BC.

Similarly, SBFX extracts a bit fi eld, but it sign extends it before putting it in a destination 
register. For example:

 LDR    R0,=0x5678ABCD
 SBFX.W R1, R0, #4, #8

This will give R1 � 0xFFFFFFBC.

LDRD and STRD

The two instructions LDRD and STRD transfer two words of data from or into two registers. 
The syntax of the instructions is:

 LDRD.W <Rxf>, <Rxf2> ,[Rn, #+/-offset]{!} ; Pre-indexed
 LDRD.W <Rxf>, <Rxf2> ,[Rn], #+/-offset    ; Post-indexed
 STRD.W <Rxf>, <Rxf2> ,[Rn, #+/-offset]{!} ; Pre-indexed
 STRD.W <Rxf>, <Rxf2> ,[Rn], #+/-offset    ; Post-indexed

where <Rxf> is the fi rst destination/source register, and <Rxf2> is the second destination/
source register.

For example, the following code reads a 64-bit value located in memory address 0x1000 into 
R0 and R1:

   LDR    R2,=0x1000
    LDRD.W R0, R1, [R2]  ; This will gives R0 = memory[0x1000], 

; R1 = memory[0x1004]

Similarly, we can use STRD to store a 64-bit value in memory. In the following example, 
pre-indexed addressing mode is used:

   LDR    R2,=0x1000 ; Base address
   STRD.W R0, R1, [R2, #0x20] ; This will gives memory[0x1000] = R0,
                             ; memory[0x1004] = R1

TBB and TBH

TBB (Table Branch Byte) and TBH (Table Branch Halfword) are for implementing branch tables. 
The TBB instruction uses a branch table of byte size offset, and TBH uses a branch table of half 
word offset. Since the bit 0 of a program counter is always zero, the value in the branch table 
is multiplied by two before it’s added to PC. Furthermore, because the PC value is the current 
instruction address plus 4, the branch range for TBB is (2 � 255) � 4 � 514, and the branch 
range for TBH is (2 � 65535) � 4 � 131074. Both TBB and TBH support forward branch only.
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TBB has this general syntax:

 TBB.W [Rn, Rm]

where Rn is the base memory offset and Rm is the branch table index. The branch table item 
for TBB is located at Rn � Rm. Assuming we used PC for Rn, we can see the operation as 
shown in Figure 4.5.

TBB [PC, Rm]PC

Rn � (PC � 4)

VAL_N[7:0]Rn � Rm

Program
Flow

New PC � (PC � 4) � 2 � VAL_N[7:0]

VAL_0[7:0]

VAL_1[7:0]

Rm � N

Figure 4.5 TBB Operation

For TBH instruction, the process is similar except the memory location of the branch table 
item is located at Rn � 2 � Rm and the maximum branch offset is higher. Again, we assume 
that Rn is set to PC, as shown in Figure 4.6.

If Rn in the table branch instruction is set to R15, the value used for Rn will be PC � 4 because 
of the pipeline in the processor. These two instructions are more likely to be used by a C 
compiler to generate code for switch (case) statements. Because the values in the branch table are 
relative to the current program counter, it is not easy to code the branch table content manually 
in assembler as the address offset value might not be able to be determined during assembly/
compile stage, especially if the branch target is in a separate program code fi le. The coding 
syntax for calculating TBB/TBH branch table content could be dependent on the development 
tool. In ARM assembler (armasm), the TBB branch table can be created in the following way:

 TBB.W [pc, r0]  ; when executing this instruction, PC equal 
; branchtable

branchtable
 DCB ((dest0 – branchtable)/2)  ; Note that DCB is used because 

; the value is 8-bit
 DCB ((dest1 – branchtable)/2)
 DCB ((dest2 – branchtable)/2)
 DCB ((dest3 – branchtable)/2)
dest0
 ... ; Execute if r0 = 0
dest1
 ... ; Execute if r0 = 1
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TBH [PC, Rm, LSL
#1]PC

Rn � (PC � 4)

VAL_N[15:0]Rn � 2 � Rm

Program
Flow

New PC � (PC � 4) � 2 � VAL_N[15:0]

VAL_0[15:0]

VAL_1[15:0]

Rm � N

Figure 4.6 TBH Operation

When the TBB instruction is executed, the current PC value is at the address labeled as 
branchtable (because of the pipeline in the processor). Similarly, for TBH instructions, it can 
be used as:

 TBH.W [pc, r0, LSL #1]
branchtable
  DCI ((dest0 – branchtable)/2)  ; Note that DCI is used because 

; the value is 16-bit
 DCI ((dest1 – branchtable)/2)
 DCI ((dest2 – branchtable)/2)
 DCI ((dest3 – branchtable)/2)
dest0
 ... ; Execute if r0 = 0
dest1
 ... ; Execute if r0 = 1
dest2
 ... ; Execute if r0 = 2
dest3
 ... ; Execute if r0 = 3

dest2
 ... ; Execute if r0 = 2
dest3
 ... ; Execute if r0 = 3
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  Memory Systems
CHAPTER 5

In This Chapter:

● Memory System Features Overview
● Memory Maps
● Memory Access Attributes
● Default Memory Access Permissions
● Bit-Band Operations
● Unaligned Transfers
● Exclusive Accesses
● Endian Mode

Memory System Features Overview

The Cortex-M3 processor has a different memory architecture from that of traditional ARM 
processors. First, it has a predefi ned memory map that specifi es which bus interface is to be 
used when a memory location is accessed. This feature also allows the processor design to 
optimize the access behavior when different devices are accessed.

Another feature of the memory system in the Cortex-M3 is the bit-band support. This provides 
atomic operations to bit data in memory or peripherals. The bit-band operations are supported 
only in special memory regions. This topic is covered in more detail later in this chapter.

The Cortex-M3 memory system also supports unaligned transfers and exclusive accesses. 
These features are part of the v7-M architecture. Finally, the Cortex-M3 supports both little 
endian and big endian memory confi guration.

Memory Maps

The Cortex-M3 processor has a fi xed memory map. This makes it easier to port software 
from one Cortex-M3 product to another. For example, components described in previous 
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sections like NVIC and MPU have the same memory locations in all Cortex-M3 products. 
Nevertheless, the memory map defi nition allows great fl exibility so that manufacturers can 
differentiate their Cortex-M3-based product from others.

Some of the memory locations are allocated for private peripherals such as debugging 
components. They are located in the private peripheral memory region. These debugging 
components include:

• Fetch Patch and BreakPoint Unit (FPB)

• Data WatchPoint and Trace Unit (DWT)

• Instrumentation Trace Macrocell (ITM)

• Embedded Trace Macrocell (ETM)

• Trace Port Interface Unit (TPIU)

• ROM Table

The details of these components are discussed in later chapters on debugging features.

The Cortex-M3 processor has a total of 4 GB of address space. Program code can be located
in the Code region, the SRAM region, or the External RAM region. However, it is best
to put the program code in the Code region because, with this arrangement, the
instruction fetches and data accesses are carried out simultaneously on two separate bus 
interfaces.

The SRAM memory range is for connecting internal SRAM. Access to this region is carried 
out via the system interface bus. In this region, a 32 MB range is defi ned as a bit-band alias. 
Within the 32 MB bit-band alias memory range, each word address represents a single bit in 
the 1 Mb bit-band region. A data write access to this memory range will be converted to an 
atomic READ-MODIFY-WRITE operation to the bit-band region so as to allow a program 
to set or clear individual data bits in the memory. The bit-band operation applies only to 
data accesses, not instruction fetches. By putting Boolean information (single bits) in bit-
band region, we can pack multiple Boolean data in a single word while still allowing it to 
be accessible individually via bit-band alias, thus saving memory space without the need for 
handling READ-MODIFY-WRITE in software. More details on bit-band alias can be found 
later in this chapter.

Another 0.5 GB block of address range is allocated to on-chip peripherals. Similar to the 
SRAM region, this region supports bit-band alias and is accessed via the system bus interface. 
However, instruction execution in this region is not allowed. The bit-band support in the 
peripheral region makes it easy to access or change control and status bits of peripherals, 
making it easier to program peripheral control.
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Two slots of 1 GB memory space are allocated for external RAM and external devices. The 
difference between the two is that program execution in the external device region is not 
allowed, and there are some differences with the caching behaviors.

The last 0.5 GB of memory is for the system-level components, internal peripheral buses, 
external peripheral bus, and vendor-specifi c system peripherals. There are two segments of the 
private peripheral bus:

• AHB private peripheral bus, for Cortex-M3 internal AHB peripherals only: This 
includes NVIC, FPB, DWT, and ITM.

ROM Table

External Private Peripheral Bus

ETM
TPIU

Reserved

NVIC

Reserved

FPB
DWT
ITM

Vendor Specific

Private Peripheral Bus:
Debug/External

Private Peripheral Bus:
Internal

External Device

External RAM

Peripherals

SRAM

Code

0.5 GB

0.5 GB

1 GB

0.5 GB

1 GB

0x00000000

0x1FFFFFFF

0x20000000

0x3FFFFFFF

0x40000000

0x5FFFFFFF

0x60000000

0x9FFFFFFF

0xA0000000

0xDFFFFFFF
0xE0000000

0xE003FFFF
0xE0040000

0xE00FFFFF

0xE0100000

0xE0000000
0xE0001000
0xE0002000
0xE0003000

0xE000E000
0xE000F000

Bit-Band Alias

32 MB

Bit-Band Region

31 MB

1MB

Bit-Band Alias

32 MB

Bit-Band Region

31 MB

1MB

0xE000DFFF

0xE003FFFF

0xFFFFFFFF

0xE0040000
0xE0041000
0xE0042000

0xE00FF000
0xE00FEFFF

0x40000000

0x40100000

0x41FFFFFF
0x42000000

0x43FFFFFF

0x20000000

0x20100000

0x21FFFFFF

0x22000000

0x23FFFFFF

Figure 5.1 A Cortex-M3 Predefi ned Memory Map 
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• APB private peripheral bus, for Cortex-M3 internal APB devices as well as external 
peripherals (external to the Cortex-M3 processor): The Cortex-M3 allows chip 
vendors to add additional on-chip APB peripherals on this APB private peripheral bus 
via an APB interface.

The NVIC is located in a memory region called the System Control Space (SCS). Besides 
providing interrupt control features, this region also provides the control registers for 
SYSTICK, MPU, and code debugging control.

System Level

0xE0000000

0xFFFFFFFF

0xE00FFFFF

0xE0000000

0xE003FFFF
0xE0040000

0xE00FFFFF

Internal
PPB

External
PPB

Private
Peripheral Bus

System
Control Space

0xE000E000

0xE000EFFF
NVIC, CPU

ID,
SYSTICK,
MPU, Core
Debug, etc.

Figure 5.2 The System Control Space

The remaining unused vendor-specifi c memory range can be accessed via the system bus 
interface. However, instruction execution in this region is not allowed.

The Cortex-M3 processor also comes with an optional MPU. Chip manufacturers can decide 
whether to include the MPU in their products.

What we have shown in the memory map is merely a template; individual semiconductor 
vendors will provide detailed memory maps including the actual location and size of ROM, 
RAM, and peripheral memory locations.

Memory Access Attributes

The memory map shows what is included in each memory region. Aside from decoding which 
memory block or device is accessed, the memory map also defi nes the memory attributes of 
the access. The memory attributes you can fi nd in the Cortex-M3 processor include these:

• Bufferable

• Cacheable

• Executable

• Sharable

The default memory attribute settings can be overridden if MPU is present and the region is 
programmed differently from the default. In spite of the fact that the Cortex-M3 processor 
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does not have a cache memory or cache controller, an external cache can be added, and
the cache attributes might also affect the operation of memory controllers for on-chip
memory and off-chip memory, depending on the memory controllers used by the chip 
manufacturers:

• Code memory region (0x00000000–0x1FFFFFFF): This region is executable, and the 
cache attribute is WT (Write Through). You can put data memory in this region as 
well. If data operations are carried out for this region, they will take place via the data 
bus interface. Write is buffered for this region.

• SRAM memory region (0x20000000–0x3FFFFFFF): This region is intended for
on-chip RAM. Write is buffered, and the cache attribute is WB-WA (Write Back, 
Write Allocated). This region is executable, so you can copy program code here and 
execute it.

• Peripheral region (0x40000000–0x5FFFFFFF): This region is intended for 
peripherals. The accesses are noncacheable. You cannot execute instruction code in 
this region (Execute Never, or XN in ARM documentation, such as the Cortex-M3 
TRM).

• External RAM region (0x60000000–0x7FFFFFFF): This region is intended for either 
on-chip or off-chip memory. The accesses are cacheable (WB-WA), and you can 
execute code in this region.

• External RAM region (0x80000000–0x9FFFFFFF): This region is intended for either 
on-chip or off-chip memory. The accesses are cacheable (WT), and you can execute 
code in this region.

• External devices (0xA0000000–0xBFFFFFFF): This region is intended for external 
devices and/or shared memory that needs ordering/nonbuffered accesses. It is also a 
nonexecutable region.

• External devices (0xC0000000–0xDFFFFFFF): This region is intended for external 
devices and/or shared memory that needs ordering/nonbuffered accesses. It is also a 
nonexecutable region.

• System region (0xE0000000–0xFFFFFFFF): This region is for private peripherals and 
vendor-specifi c devices. It is nonexecutable. For the private peripheral bus memory 
range, the accesses are strongly ordered (noncacheable, nonbufferable). For the 
vendor-specifi c memory region, the accesses are bufferable and noncacheable.

Note that from Revision 1 of the Cortex-M3, the memory attribute for the Code region
is hardwired to cacheable and nonbufferable. This cannot be overridden by MPU 
confi guration.
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Default Memory Access Permissions

The Cortex-M3 memory map has a default confi guration for memory access permissions. This 
prevents user programs from accessing system control memory spaces such as the NVIC. The 
default memory access permission is used when either:

• No MPU is present

• MPU is present but disabled

If MPU is present and enabled, the access permission in the MPU setup will determine 
whether user accesses are allowed.

The default memory access permissions are shown in Table 5.1.

When a user access is blocked, the fault exception takes place immediately.

Bit-Band Operations

Bit-band operation support allows a single load/store operation to access (read/write) to a 
single data bit. In the Cortex-M3, this is supported in two predefi ned memory regions called 

Memory Region Address Access in User Program
Vendor specifi c 0xE0100000–0xFFFFFFFF Full access

ROM Table 0xE00FF000–0xE00FFFFF Blocked; user access results in bus fault

External PPB 0xE0042000–0xE00FEFFF Blocked; user access results in bus fault

ETM 0xE0041000–0xE0041FFF Blocked; user access results in bus fault

TPIU 0xE0040000–0xE0040FFF Blocked; user access results in bus fault

Internal PPB 0xE000F000–0xE003FFFF Blocked; user access results in bus fault

NVIC 0xE000E000–0xE000EFFF  Blocked; user access results in bus fault, except Software 
Trigger Interrupt Register that can be programmed to 
allow user accesses

FPB 0xE0002000–0xE0003FFF Blocked; user access results in bus fault

DWT 0xE0001000–0xE0001FFF Blocked; user access results in bus fault

ITM 0xE0000000–0xE0000FFF  Read allowed; write ignored except for stimulus ports 
with user access enabled

External Device 0xA0000000–0xDFFFFFFF Full access

External RAM 0x60000000–0x9FFFFFFF Full access

Peripheral 0x40000000–0x5FFFFFFF Full access

SRAM 0x20000000–0x3FFFFFFF Full access

Code 0x00000000–0x1FFFFFFF Full access

Table 5.1 Default Memory Access Permissions
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bit-band regions. One of them is located in the fi rst 1 MB of the SRAM region, and the 
other is located in the fi rst 1 MB of the peripheral region. These two memory regions can be 
accessed like normal memory, but they can also be accessed via a separate memory region 
called the bit-band alias. When the bit-band alias address is used, each individual bit can be 
accessed separately in the least signifi cant bit (LSB) of each word-aligned address.

0x20000000

0x20000004

0x20000008

0x200FFFFC

031

0x220000000x2200002C

0x22000080

0x22000010

81624

Bit-Band
Region
Address

Bit-Band
Alias

Address

Bit

Figure 5.3 Bit Accesses to Bit-Band Region Via the Bit-Band Alias

For example, to set bit 2 in word data in address 0x20000000, instead of using three 
instructions to read the data, set the bit, and then write back the result, this task can be carried 
out by a single instruction (see Figure 5.4).

Read 0x20000000
to register

Set bit 2 in register

Write register to
0x20000000

Without Bit-Band With Bit-Band

Write 1 to
0x22000008

Mapped to 2
bus transfers

Read data from
0x20000000 to

buffer

Write to
0x20000000 from

buffer with bit 2 set

Figure 5.4 Write to Bit-Band Alias

The assembler sequence for these two cases could be like the one shown in Figure 5.5.

Similarly, bit-band support can simplify application code if we need to read a bit in a memory 
location. For example, if we need to determine bit 2 of address 0x20000000, we use the steps 
outlined in Figure 5.6.
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The assembler sequence for these two cases could be like the one shown in Figure 5.7.

LDR   R0,=0x20000000 ; Setup address

LDR   R1, [R0]       ; Read

ORR.W R1, #0x4       ; Modify bit

STR   R1, [R0] ; Write back result

Without Bit-Band With Bit-Band

LDR   R0,=0x22000008 ; Setup address

MOV   R1, #1         ; Setup data

STR   R1, [R0]       ; Write

Figure 5.5 Example Assembler Sequence to Write a Bit With and Without Bit-Band

Read 0x20000000
to register

Shift bit 2 to LSB
and mask other bits

Without Bit-Band With Bit-Band

Mapped to 1
bus transfers

Read data from
0x20000000 and

extract bit 2 to
register

Read from
0x22000008

Figure 5.6 Read from the Bit-Band Alias

LDR    R1, [R0]       ; Read

LDR    R0,=0x20000000 ; Setup address

UBFX.W R1,R1, #2, #1  ; Extract bit[2]

Without Bit-Band With Bit-Band

LDR   R0,=0x22000008 ; Setup address

LDR   R1, [R0]       ; Read

Figure 5.7 Read from the Bit-Band Alias

Bit-band operation is not a new idea; in fact, a similar feature has existed for more than
30 years on 8-bit microcontrollers such as the 8051. Although the Cortex-M3 does not have 
special instructions for bit operation, special memory regions are defi ned so that data accesses 
to these regions are automatically converted into bit-band operations.

Note that the Cortex-M3 uses the following terms for the bit-band memory addresses:

• Bit-band region: This is a memory address region that supports bit-band operation.

• Bit-band alias: Access to the bit-band alias will cause an access (a bit-band operation) 
to the bit-band region. (Note: A memory remapping is performed.)

Within the bit-band region, each word is represented by an LSB of 32 words in the bit-band 
alias address range. What actually happens is that, when the bit-band alias address is accessed, 
the address is remapped into a bit-band address. For read operations, the word is read and 
the chosen bit location is shifted to the LSB of the read return data. For write operations, 
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the written bit data is shifted to the required bit position, and a READ-MODIFY-WRITE is 
performed.

There are two regions of memory for bit-band operations:

• 0x20000000–0x200FFFFF (SRAM, 1 Mb)

• 0x40000000–0x400FFFFF (Peripherals, 1 Mb)

For the SRAM memory region, the remapping of the bit-band alias is shown in Table 5.2.

Similarly, the bit-band region of the peripheral memory region can be accessed via bit-band 
aliased addresses, as shown in Table 5.3.

Bit-Band Region Aliased Equivalent
0x20000000 bit[0] 0x22000000 bit[0]

0x20000000 bit[1] 0x22000004 bit[0]

0x20000000 bit[2] 0x22000008 bit[0]

… …

0x20000000 bit[31] 0x2200007C bit[0]

0x20000004 bit[0] 0x22000080 bit[0]

… …

0x20000004 bit[31] 0x220000FC bit[0]

… …

0x200FFFFC bit[31] 0x23FFFFFC bit[0]

Table 5.2 Remapping of Bit-Band 
Addresses in SRAM Region

Bit-Band Region Aliased Equivalent
0x40000000 bit[0] 0x42000000 bit[0]

0x40000000 bit[1] 0x42000004 bit[0]

0x40000000 bit[2] 0x42000008 bit[0]

… …

0x40000000 bit[31] 0x4200007C bit[0]

0x40000004 bit[0] 0x42000080 bit[0]

… …

0x40000004 bit[31] 0x420000FC bit[0]

… …

0x400FFFFC bit[31] 0x43FFFFFC bit[0]

Table 5.3 Remapping of Bit-Band 
Addresses in Peripheral Memory Region

CH05-H8534.indd   91CH05-H8534.indd   91 7/19/07   1:30:53 PM7/19/07   1:30:53 PM



Chapter 5

92

Here’s a simple example:

1. Set address 0x20000000 to a value of 0x3355AACC.

2. Read address 0x22000008. This read access is remapped into read access to 0x20000000. 
The return value is 1 (bit[2] of 0x3355AACC).

3. Write 0x0 to 0x22000008. This write access is remapped into a READ-MODIFY-WRITE 
to 0x20000000. The value 0x3355AACC is read from memory, bit 2 is cleared, and a 
result of 0x3355AAC8 is written back to address 0x20000000.

4. Now read 0x20000000. That gives you a return value of 0x3355AAC8 (bit[2] cleared).

When you access bit-band alias addresses, only the LSB (bit[0]) in the data is used. In 
addition, accesses to the bit-band alias region should not be unaligned. If an unaligned access 
is carried out to bit-band alias address range, the result is unpredictable.

Advantages of Bit-Band Operations

So, what are the uses of bit-band operations? We can use them to, for example, implement 
serial data transfers in general-purpose input/output (GPIO) ports to serial devices. The 
application code can be implemented easily because access to serial data and clock signals can 
be separated.

Bit-Band vs Bit-Bang

In the Cortex-M3, we use the term bit-band to indicate that the feature is a special 
memory band (region) that provides bit accesses. Bit-band commonly refers to driving 
I/O pins under software control to provide serial communication functions. The bit-
band feature in the Cortex-M3 can be used for bit-banging implementations, but the 
defi nitions of these two terms are different.

Bit-band operation can also be used to simplify branch decisions. For example, if a branch 
should be carried out based on 1 single bit in a status register in a peripheral, instead of:

• Reading the whole register

• Masking the unwanted bits

• Comparing and branching

you can simplify the operations to:

• Reading the status bit via the bit-band alias (get 0 or 1)

• Comparing and branching
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Besides providing faster bit operations with fewer instructions, the bit-band feature in the 
Cortex-M3 is also essential for situations in which resources are being shared by more than 
one process. One of the most important advantages or properties of bit-band operation is that 
it is atomic. In other words, the READ-MODIFY-WRITE sequence cannot be interrupted by 
other bus activities. Without this behavior in, for example, using a software READ-MODIFY-
WRITE sequence, the following problem can occur: Consider a simple output port with bit 
0 used by a main program and bit 1 used by an interrupt handler. A software based READ-
MODIFY-WRITE operation can cause data confl icts, as shown in Figure 5.8.

Without bit-band operation

Output port
read to
register

Bit 0 set by
main

program

Write to
output port

Output port
read to
register

Output port
read to
register

Bit 0 cleared by
main

program

Write to
output port

Main Program

Interrupt Handler

Output port
read

Bit 1 modified
by interrupt

handler

Write to
output port

Time

Output Port Value 0x00 0x01 0x03 0x00

Thread Mode

Handler Mode

Change made by
interrupt handler lost

Figure 5.8 Data Are Lost When an Exception Handler Modifi es a Shared Memory Location

With the Cortex-M3 bit-band feature, this kind of race condition can be avoided because the 
READ-MODIFY-WRITE is carried out at the hardware level and is atomic (the two transfers 
cannot be pulled apart) and interrupts cannot take place between them (see Figure 5.9).

Similar issues can be found in multitasking systems. For example, if bit 0 of the output port is 
used by Process A and bit 1 is used by Process B, a data confl ict can occur in software-based 
READ-MODIFY-WRITE (see Figure 5.10).

Again, the bit-band feature can ensure that bit accesses from each task are separated so that no 
data confl icts occur (see Figure 5.11).

Besides I/O functions, the bit-band feature can be used for storing and handling Boolean data 
in the SRAM region. For example, multiple Boolean variables can be packed into one single 
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With bit-band operation

Bit 0 set by main program
by write to bit-band alias

Locked READ-
MODIFY-WRITE

Locked READ-
MODIFY-WRITE

Locked READ-
MODIFY-WRITE

Write to
output port via bit

band alias

Main Program

Interrupt Handler

Bit 1 modified by interrupt
handler by write to bit-band

alias

Time

Output Port Value 0x00 0x01 0x00 0x02

Thread Mode

Handler Mode

Figure 5.9 Data Loss Prevention with Locked Transfers Using the Bit-Band Feature

Without bit-band operation

Output port
read to
register

Bit 0 set by
Task A

Write to
output port

Output port
read to
register

Output port
read to
register

Bit 0 cleared by
Task A

Write to
output port

Task A

Task B

Output port
read

Bit 1 modified
by Task B

Write to
output port

Time

Output Port Value 0x00 0x01 0x03 0x00

Current Task

Change made by
Task B is lost

Task A Task B Task A Task B Task A

Figure 5.10 Data Are Lost When a Different Task Modifi es a Shared Memory Location

memory location to save memory space, whereas the access to each bit is still completely 
separated when the access is carried out via the bit-band alias address range.

For SoC designers designing a bit-band-capable device, the device’s memory address should 
be located within the bit-band memory, and the lock (HMASTLOCK) signal from the AHB 
interface must be checked to make sure that writable register contents will not be changed 
except by the bus when a locked transfer is carried out.
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Bit-Band Operation of Different Data Sizes

Bit-band operation is not limited to word transfers. It can be carried out as byte transfers or 
half word transfers as well. For example, when a byte access instruction (LDRB/STRB) is 
used to access a bit-band alias address range, the accesses generated to the bit-band region 
will be in byte size. The same applies to half word transfers (LDRH/STRH). When you use 
nonword transfers to bit-band alias addresses, the address value should still be word aligned.

Bit-Band Operations in C Programs

There is no native support of bit-band operation in C compilers. For example, C compilers 
do not understand that the same memory can be accessed using two different addresses, and 
they do not know that accesses to the bit-band alias will only access the LSB of the memory 
location. To use the bit-band feature in C, the most simple solution is to separately declare the 
address and the bit-band alias of a memory location. For example:

#defi ne DEVICE_REG0 ((volatile unsigned long *) (0x40000000))
#defi ne DEVICE_REG0_BIT0 ((volatile unsigned long *) (0x42000000))
#defi ne DEVICE_REG0_BIT1 ((volatile unsigned long *) (0x42000004))
   ...
   *DEVICE_REG0 = 0xAB;   // Accessing the hardware register by normal 

// address
   ...
   *DEVICE_REG0 = *DEVICE_REG0 | 0x2;   // Setting bit 1 without using 

// bitband feature
   ...

Bit 0 set by Task A by write
to bit-band alias

Locked READ-
MODIFY-WRITE

Locked READ-
MODIFY-WRITE

Locked READ-
MODIFY-WRITE

Write to
output port via bit-

band alias

Bit 1 modified by Task B
by write to bit-band alias

Time

Output Port Value 0x00 0x01 0x00 0x02

With bit-band operation

Task A Task B Task A Task B Task A

Task A

Task B

Current Task

Figure 5.11 Data Loss Prevention with Locked Transfers Using the Bit-Band Feature
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   *DEVICE_REG0_BIT1 = 0x1;   // Setting bit 1 using bitband feature 
// via the bit band alias address

It is also possible to develop C macros to make accessing the bit-band alias easier. For 
example, we could set up one macro to convert the bit-band address and the bit number into 
the bit-band alias address and set up another macro to access the memory location by taking 
the address value as a pointer:

// Convert bit band address and bit number into bit band alias address
#defi ne BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x2000000+((addr & 
  0xFFFFF)<<5)+(bitnum <<2))

// Convert the address as a pointer
#defi ne MEM_ADDR(addr) *((volatile unsigned long *) (addr))

Based on the previous example, we rewrite the code as follows:

#defi ne DEVICE_REG0 0x40000000
#defi ne BITBAND(addr,bitnum) ((addr & 0xF0000000)+0x02000000+((addr & 
  0xFFFFF)<<5)�(bitnum<<2))
#defi ne MEM_ADDR(addr) *((volatile unsigned long *) (addr))

       …
        MEM_ADDR(DEVICE_REG0) = 0xAB;  // Accessing the hardware 

// register by normal address
       …
       // Setting bit 1 without using bitband feature
       MEM_ADDR(DEVICE_REG0) = MEM_ADDR(DEVICE_REG0) | 0x2;

       …
       // Setting bit 1 with using bitband feature
       MEM_ADDR(BITBAND(DEVICE_REG0,1)) = 0x1;

Note that when the bit-band feature is used, the variables being accessed should be 
declared as volatile. The C compilers do not know that the same data could be accessed in 
two different addresses, so the volatile property is used to ensure that each time a variable 
is accessed, the memory location is accessed instead of a local copy of the data inside the 
processor.

You can fi nd further examples of bit-band accesses with C macros using ARM RealView 
Compiler Tools 3.0 in the ARM Application Note 179 (Ref 7).

Unaligned Transfers

The Cortex-M3 supports unaligned transfers on single accesses. Data memory accesses can be 
defi ned as aligned or unaligned. Traditionally, ARM processors (such as the ARM7/ARM9/
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ARM10) allow only aligned transfers. That means that in accessing memory, a word transfer 
must have address bit[1] and bit[0] equal to 0, and a half word transfer must have address 
bit[0] equal to 0. For example, word data can be located at 0x1000 or 0x1004, but it cannot 
be located in 0x1001, 0x1002, or 0x1003. For half word data, the address can be 0x1000 or 
0x1002, but it cannot be 0x1001.

So, what does an unaligned transfer look like? Figures 5.12–5.16 show some examples. 
Assuming that the memory infrastructure is 32-bit (4 bytes) wide, an unaligned transfer can 
be any word size read/write such that the address is not a multiple of 4, as shown in Figures 
5.12–5.14, or when the transfer is in half word size, and the address is not a multiple of 2, as 
in Figures 5.15 and 5.16.

Address N

Address N � 4

Byte
3

[23:16] [15:8] [7:0]

[31:24]

Byte
2

Byte
1

Byte
0

Figure 5.12 Unaligned Transfer Example 1

Address N

Address N � 4

Byte
3

[15:8] [7:0]

[31:24] [23:16]

Byte
2

Byte
1

Byte
0

Figure 5.13 Unaligned Transfer Example 2

Address N

Address N � 4

Byte
3

[7:0]

[31:24] [23:16] [15:8]

Byte
2

Byte
1

Byte
0

Figure 5.14 Unaligned Transfer Example 3

Address N

Address N � 4

Byte
3

[7:0][15:8]

Byte
2

Byte
1

Byte
0

Figure 5.15 Unaligned Transfer Example 4

Address N

Address N � 4
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2
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Figure 5.16 Unaligned Transfer Example 5
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All the byte-size transfers are aligned on the Cortex-M3 because the minimum address step is 
1 byte.

In the Cortex-M3, unaligned transfers are supported in normal memory accesses (such as 
LDR, LDRH, STR, and STRH instructions). There are a number of limitations:

• Unaligned transfers are not supported in Load/Store multiple instructions.

• Stack operations (PUSH/POP) must be aligned.

• Exclusive accesses (such as LDREX or STREX) must be aligned; otherwise a fault 
exception (usage fault) will be triggered.

• Unaligned transfers are not supported in bit-band operations. Results will be 
unpredictable if you attempt to do so.

When unaligned transfers are used, they are actually converted into multiple aligned 
transfers by the processor’s bus interface unit. This conversion is transparent, so application 
programmers do not have to worry about it. However, when an unaligned transfer takes place, 
it is broken into separate transfers and as a result it takes more clock cycles for a single data 
access and might not be good for situations in which high performance is required. To get the 
best performance, it’s worth making sure that data are aligned properly.

It is also possible to set up the NVIC so that an exception is triggered when an unaligned 
transfer takes place. This is done by setting the UNALIGN_TRP (Unaligned Trap) bit in 
the Confi guration Control Register in the NVIC (0xE000ED14). In this way, the Cortex-M3 
generates usage fault exceptions when unaligned transfers take place. This is useful during 
software development to test whether an application produces unaligned transfers.

Exclusive Accesses

You might have noticed that the Cortex-M3 has no SWP instruction (swap), which was used 
for semaphore operations in traditional ARM processors like ARM7TDMI. This is now 
being replaced by exclusive access operations. Exclusive accesses were fi rst supported in 
architecture v6 (for example, in the ARM1136).

Semaphores are commonly used for allocating shared resources to applications. When a 
resource is being used by one process, it is locked to that process and cannot serve another 
process until the lock is released. To set up a semaphore, a memory location is defi ned as 
the lock fl ag to indicate whether a shared resource is locked by a process. When a process 
or application want to use the resource, it needs to check whether the resource has been 
locked fi rst. If it is not being used, it can set the lock fl ag to indicate that the resource is now 
locked. In traditional ARM processors, the access to the lock fl ag is carried out by the SWP 
instruction. It allows the lock fl ag read and write to be atomic, preventing the resource from 
being locked by two processes at the same time.
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In newer ARM processors, the read/write access can be carried out on separated buses. In such 
situations, the SWP instructions can no longer be used to make the memory access atomic, 
since the read and write in a locked transfer sequence must be on the same bus. Therefore, the 
locked transfers are replaced by exclusive accesses. The concept of exclusive access operation 
is quite simple but different from SWP; it allows the possibility that the memory location for 
a semaphore could be accessed by another bus master or another process running on the same 
processor (see Figure 5.17).

Exclusive Read
(e.g., LDREX)

Exclusive Write
(e.g., STREX)

Read lock bit

Check lock bit
set?

Set lock bit

Yes

Yes
No

No

Failed. Lock bit already set;
indicates the requested
resource is used by another
process or processor.

Failed. The memory region
containing the lock bit could
have been accessed by
another process or processor.

Success. The lock bit is set
and the processor can
access the shared resource.

Return status
from exclusive

write � 0
(success)?

Figure 5.17 Using Exclusive Access in Semaphores

If the memory device has been accessed by another bus master between the exclusive read 
and the exclusive write, the exclusive access monitor will fl ag an exclusive failed through the 
bus system when the processor attempts the exclusive write. This will cause the return status 
of the exclusive write to be 1. To monitor exclusive accesses in a system with multiple bus 
masters (such as multiple processor designs), additional monitor hardware and bus sideband 
signals are needed. In the Cortex-M3 processor, the required sideband signals are available for 
a D-Code bus (called EXREQD and EXRESPD) and a system bus (EXREQS and EXRESPS). 
The instruction bus (I-Code) does not have exclusive access sideband signals.

Exclusive access instructions in the Cortex-M3 include LDREX (word), LDREXB (byte), 
LDREXH (half word), STREX (word), STREXB (byte), and STREXH (half word). A simple 
example of the syntax is:

     LDREX    <Rxf>, [Rn, #offset]
     STREX    <Rd>, <Rxf> ,[Rn, #offset]
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where �Rd� is the return status of the exclusive write (0 � success, 1 � failure). Example 
code for exclusive accesses can be found in Chapter 10.

When exclusive accesses are used, the internal write buffers in the Cortex-M3 bus interface 
will be bypassed, even when the MPU defi nes the region as bufferable. This ensures that 
semaphore information on the physical memory is always up to date and coherent between 
bus masters. SoC designers using Cortex-M3 on multiprocessor systems should ensure that the 
memory system enforces data coherency when exclusive transfers occur.

Endian Mode

The Cortex-M3 supports both little endian and big endian modes. However, the supported 
memory type also depends on the design of the rest of the microcontroller (bus connections, 
memory controllers, peripherals, and so on). Make sure that you check your microcontroller 
datasheets in detail before developing your software. In most cases, Cortex-M3-based 
microcontrollers will be little endian.

The defi nition of big endian in the Cortex-M3 is different from the ARM7’s. In the ARM7TDMI, 
the big endian scheme is called word-invariant big endian, whereas in the Cortex-M3, the big 
endian scheme is called byte-invariant big endian. (Byte-invariant big endian is supported on 
ARM architecture v6 and v7.) See Table 5.4.

Note that the data transfer on the AHB bus in BE-8 mode uses the same data byte lanes as in 
little endian. However, the data byte inside the half word or word data is reversely ordered (see 
Table 5.5).

This behavior is different from ARM7TDMI, which has a different bus lane arrangement 
when operating in big endian mode. As mentioned, the big endian mode used in ARM7 is 
called word-invariant big endian, and the bus lane usage in the bus is as shown in Table 5.6.

In the Cortex-M3, the endian mode is set when the processor exits reset. The endian mode 
cannot be changed afterward. (There is no dynamic endian switching, and the SETEND 

Address, Size Bits 31–24 Bits 23–16 Bits 15–8 Bits 7–0
0x1000, word Data[7:0] Data[15:8] Data[23:16] Data[31:24]

0x1000, half word Data[7:0] Data[15:8] — —

0x1002, half word — — Data[7:0] Data[15:8]

0x1000, byte Data[7:0] — — —

0x1001, byte — Data[7:0] — —

0x1002, byte — — Data[7:0] —

0x1003, byte — — — Data[7:0]

Table 5.4 The Cortex-M3 (Byte-Invariant Big Endian): Memory View
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instruction is not supported.) Instruction fetches are always in little endian, as are data 
accesses in the confi guration control memory space (such as the NVIC, FPB, and the like) and 
the external PPB memory range (memory range from 0xE0000000 to 0xE00FFFFF is always 
little endian).

In case your SoC does not support big endian but one or some of the peripherals you are using 
contain big endian data, you can easily convert the data between little endian and big endian 
using some of the new instructions in the Cortex-M3. For example, REV and REVH are very 
useful for this kind of conversion.

Address, Size Bits 31–24 Bits 23–16 Bits 15–8 Bits 7–0
0x1000, word Data[7:0] Data[15:8] Data[23:16] Data[31:24]

0x1000, half word — — Data[7:0] Data[15:8]

0x1002, half word Data[7:0] Data[15:8] — —

0x1000, byte — — — Data[7:0]

0x1001, byte — — Data[7:0] —

0x1002, byte — Data[7:0] — —

0x1003, byte Data[7:0] — — —

Table 5.5 Cortex-M3 (Byte-Invariant Big Endian): Data on AHB Bus

Address, Size Bits 31–24 Bits 23–16 Bits 15–8 Bits 7–0
0x1000, word Data[7:0] Data[15:8] Data[23:26] Data[31:24]

0x1000, half word Data[7:0] Data[15:8] — —

0x1002, half word — — Data[7:0] Data[15:8]

0x1000, byte Data[7:0] — — —

0x1001, byte — Data[7:0] — —

0x1002, byte — — Data[7:0] —

0x1003, byte — — — Data[7:0]

Table 5.6 ARM7 (Word-Invariant Big Endian): Data on AHB Bus
(Different from Memory View)
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Cortex-M3 Implementation Overview
CHAPTER 6

In This Chapter:

● The Pipeline
● A Detailed Block Diagram
● Bus Interfaces on the Cortex-M3
● Other Interfaces on the Cortex-M3
● The External Private Peripheral Bus
● Typical Connections
● Reset Signals

The Pipeline

The Cortex-M3 processor has a three-stage pipeline. The pipeline stages are instruction 
fetch, instruction decode, and instruction execution (see Figure 6.1).

Instruction N

Instruction N � 1

Instruction N � 2

Instruction N � 3

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Fetch Decode Execute

Figure 6.1 The Three-Stage Pipeline in the Cortex-M3

Some people might argue that there are four stages because of the pipeline behavior in the bus 
interface when it accesses memory, but this stage is outside the processor, so the processor 
itself still has only three stages.

When running programs with mostly 16-bit instructions, you will fi nd that the processor 
might not fetch instructions in every cycle. This is because the processor fetches up to two 
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instructions (32-bit) in one go, so after one instruction is fetched, the next one is already inside 
the processor. In this case, the processor bus interface may try to fetch the instruction after 
the next or, if the buffer is full, the bus interface could be idle. Some of the instructions take 
multiple cycles to execute; in this case, the pipeline will be stalled.

In executing a branch instruction, the pipeline will be fl ushed. The processor will have to fetch 
instructions from the branch destination to fi ll up the pipeline again. However, the Cortex-
M3 processor supports a number of instructions in v7-M architecture, so some of the short-
distance branches can be avoided by replacing them with conditional execution codes.1

Due to the pipeline nature of the processor and to ensure that the program is compatible 
with Thumb codes, when the program counter is read during instruction execution, the read 
value will be the address of the instruction plus 4. This offset is constant, independent of the 
combination of 16-bit Thumb instructions and 32-bit Thumb-2 instructions. This ensures 
consistency between Thumb and Thumb-2.

Inside the instruction pre-fetch unit of the processor core, there is also an instruction buffer. 
This buffer allows additional instructions to be queued before they are needed. This buffer 
prevents the pipeline being stalled when the instruction sequence contains 32-bit Thumb-2 
instructions that are not word aligned. However, this buffer does not add an extra stage to the 
pipeline, so it does not increase the branch penalty.

1 For more information, refer to the “IF-THEN Instructions” section of Chapter 4.
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A Detailed Block Diagram

The Cortex-M3 processor contains not only the processor core but also a number of 
components for system management, as well as debugging support components.

CM3Core
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Interrupts
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Figure 6.3 The Cortex-M3 Processor System Block Diagram

Note that the MPU and ETM blocks are optional blocks that can be included in the 
microcontroller system at the time of implementation.

A number of new components are shown in this diagram (see Table 6.1).

The Cortex-M3 processor is released as a processor subsystem. The CPU core itself is closely 
coupled to the interrupt controller (NVIC) and various debug logic blocks:

• CM3Core: The Cortex-M3 core contains the registers, ALU, data path, and bus 
interface.

• Nested Vectored Interrupt Controller: The NVIC is a built-in interrupt controller. 
The number of interrupts is customized by chip manufacturers. The NVIC is closely 
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coupled to the CPU core and contains a number of system control registers. It supports 
nested interrupt handling, which means that with the Cortex-M3, nested interrupt 
handling is very simple. It also comes with a vectored interrupt feature so that when 
an interrupt occurs, it can enter the corresponding interrupt handler routine directly, 
without using a shared handler to determine which interrupt has occurred.

• SYSTICK Timer: The System Tick (SYSTICK) Timer is a basic countdown timer 
that can be used to generate interrupts at regular time intervals, even when the system 
is in sleep mode. It makes OS porting between Cortex-M3 devices much easier 
because there is no need to change the OS’s system timer code. The SYSTICK Timer 
is implemented as part of the NVIC.

• Memory Protection Unit: The MPU block is optional. This means that some versions 
of the Cortex-M3 might have the MPU and some might not. If it is included, the MPU 
can be used to protect memory contents by, for example, making memory regions 
read-only or preventing user applications from accessing privileged applications data.

Name Description
CM3Core Central processing core of the Cortex-M3 processor

NVIC Nested Vectored Interrupt Controller

SYSTICK Timer A simple timer that can be used by the operating system

MPU Memory Protection Unit (optional)

CM3BusMatrix Internal AHB interconnection

AHB to APB Bus bridge to convert AHB to APB

SW-DP/SWJ-DP interface  Serial Wire/Serial Wire JTAG debug port (DP) interface; debug interface 
connection implemented using either Serial Wire Protocol or traditional 
JTAG Protocol (for SWJ-DP) 

AHB-AP  AHB Access Port; converts commands from Serial Wire/SWJ interface into 
AHB transfers

ETM  Embedded Trace Macrocell; a module to handle instruction trace for debug 
(optional)

DWT  Data Watchpoint and Trace unit; a module to handle the data watchpoint 
function for debug

ITM Instrumentation Trace Macrocell

TPIU  Trace Port Interface Unit; an interface block to send debug data to external 
trace capture hardware

FPB Flash Patch and Breakpoint unit

ROM Table A small lookup table that stores confi guration information

Table 6.1 Block Diagram Acronyms and Defi nitions
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• BusMatrix: A BusMatrix is used as the heart of the Cortex-M3 internal bus system. It 
is an AHB interconnection network, allowing transfer to take place on different buses 
simultaneously unless both bus masters are trying to access the same memory region. 
The BusMatrix also provides additional data transfer management, including a write 
buffer as well as bit-oriented operations (bit-band).

• AHB to APB: An AHB-to-APB bus bridge is used to connect a number of APB 
devices such as debugging components to the private peripheral bus in the Cortex-M3 
processor. In addition, the Cortex-M3 allows chip manufacturers to attach additional 
APB devices to the external private peripheral bus using this APB bus. 

The rest of the components in the block diagram are for debugging support and normally 
should not be used by application code:

• SW-DP/SWJ-DP: The Serial Wire Debug Port (SW-DP)/Serial Wire JTAG Debug 
Port (SWJ-DP) work together with the AHB Access Port (AHB-AP) so that external 
debuggers can generate AHB transfers to control debug activities. There is no JTAG 
scan chain inside the processor core of the Cortex-M3; most debugging functions are 
controlled by the NVIC registers through AHB accesses. SWJ-DP supports both the 
Serial Wire Protocol and the JTAG Protocol, whereas SW-DP can support only the 
Serial Wire Protocol.

• AHB-AP: The AHB Access Port provides access to the whole Cortex-M3 memory 
via a few registers. This block is controlled by the SW-DP/SWJ-DP through a 
generic debug interface called the Debug Access Port (DAP). To carry out debugging 
functions, the external debugging hardware needs to access the AHB-AP via the SW-
DP/SWJ-DP to generate the required AHB transfers.

• Embedded Trace Macrocell: The ETM is an optional component for instruction trace, 
so some Cortex-M3 products might not have real-time instruction trace capability. 
Trace information is output to the trace port via TPIU. The ETM control registers are 
memory mapped, which can be controlled by the debugger via the DAP.

• Data Watchpoint and Trace: The DWT allows data watchpoints to be set up. When a 
data address or data value match is found, the match hit event can be used to generate 
watchpoint events to activate the debugger, generate data trace information, or activate 
the ETM.

• Instrumentation Trace Macrocell: The ITM can be used in several ways. Software can 
write to this module directly to output information to TPIU, or the DWT matching 
events can be used to generate data trace packets via ITM for output into a trace data 
stream.

• Trace Port Interface Unit: The TPIU is used to interface with external trace hardware 
such as trace port analyzers. Internal to the Cortex-M3, trace information is formatted 
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as Advanced Trace Bus (ATB) packets, and the TPIU reformats the data to allow data 
to be captured by external devices.

• FPB: The FPB is used to provide Flash Patch and Breakpoint functionalities. Flash 
Patch means that if an instruction access by the CPU matches a certain address, the 
address can be remapped to a different location so that a different value is fetched. 
Alternatively, the matched address can be used to trigger a breakpoint event. The Flash 
Patch feature is very useful for testing, such as adding diagnosis program code to a 
device that cannot be used in normal situations unless the FPB is used to change the 
program control.

• ROM table: A small ROM table is provided. This is simply a small lookup table 
to provide memory map information for various system devices and debugging 
components. Debugging systems use this table to locate the memory addresses 
of debugging components. In most cases, the memory map should be fi xed to the 
standard memory location, as documented in the Cortex-M3 TRM, but because 
some of the debugging components are optional and additional components can be 
added, individual chip manufacturers might want to customize their chip’s debugging 
features. In this case, the ROM table must be customized and used for debugging 
software to determine the correct memory map and hence detect the type of debugging 
components available.

Bus Interfaces on the Cortex-M3

Unless you are designing a SoC product using the Cortex-M3 processor, it is unlikely that you 
can directly access the bus interface signals described here. Normally the chip manufacturer 
will hook up all the bus signals to memory blocks and peripherals, and in a few cases, you 
might fi nd that the chip manufacturer connected the bus to a bus bridge and allows external 
bus systems to be connected off-chip. The bus interfaces on the Cortex-M3 processor are 
based on AHB-Lite and APB protocols, which are documented in the AMBA Specifi cation 
(Ref 4).

The I-Code Bus

The I-Code bus is a 32-bit bus based on the AHB-Lite bus protocol for instruction fetches in 
memory regions from 0x00000000 to 0x1FFFFFFF. Instruction fetches are performed in word 
size, even for Thumb instructions. Therefore, during execution, the CPU core could fetch up 
to two Thumb instructions at a time.

The D-Code Bus

The D-Code bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for data access 
in memory regions from 0x00000000 to 0x1FFFFFFF. Although the Cortex-M3 processor 
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supports unaligned transfers, you won’t get any unaligned transfer on this bus, because the 
bus interface on the processor core converts the unaligned transfers into aligned transfers for 
you. Therefore, devices (such as memory) that attach to this bus need only support AHB-Lite 
(AMBA 2.0) aligned transfers.

The System Bus

The system bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for instruction 
fetch and data access in memory regions from 0x20000000 to 0xDFFFFFFF and 0xE0100000 
to 0xFFFFFFFF. As with the to the D-Code bus, all transfers are aligned.

The External Private Peripheral Bus

The External Private Peripheral bus (External PPB) is a 32-bit bus based on the APB bus 
protocol. This is intended for private peripheral accesses in memory regions 0xE0040000 to 
0xE00FFFFF. However, since some part of this APB memory is already used for TPIU, ETM, 
and the ROM table, the memory region that can be used for attaching extra peripherals on this 
bus is only 0xE0042000 to 0xE00FF000. Transfers on this bus are word aligned.

The Debug Access Port Bus

The Debug Access Port (DAP) bus interface is a 32-bit bus based on an enhanced version of 
the APB specifi cation. This is for attaching debug interface blocks such as SWJ-DP or SW-
DP. Do not use this bus for other purposes. More information on this interface can be found 
in Chapter 15, “Debug Architecture,” or in the ARM document CoreSight Technology System 
Design Guide (Ref 3).

Other Interfaces on the Cortex-M3

Apart from bus interfaces, the Cortex-M3 processor has a number of other interfaces for 
various purposes. These signals are unlikely to appear on the pins of the silicon chip, because 
they are mostly for connecting to various parts of the SoC or are unused. The details of the 
signals are contained in the Cortex-M3 Technical Reference Manual (TRM) (Ref 1). Table 6.2 
contains a short summary of some of them.

The External Private Peripheral Bus

The Cortex-M3 processor has an External Private Peripheral bus (PPB) interface. The 
External PPB interface is based on the Advance Peripheral Bus (APB) protocol in AMBA 
specifi cation 2.0. It is intended for system devices that should not be shared, such as 
debugging components. To support CoreSight devices, this interface contains an extra signal 
called PADDR31. This signal indicates the source of a transfer. If this signal is 0, it means that 
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the transfer is generated from software running on the Cortex-M3. If this signal is 1, it means 
that the transfer is generated by debugging hardware. Based on this signal, a peripheral can be 
designed so that only a debugger can use it, or when being used by software, only some of the 
features are allowed.

This bus is not intended for general use, as in peripherals. Although there is nothing to stop 
chip designers from designing and attaching general peripherals on this bus, users might fi nd 
it a problem for programming later, due to privileged access-level management—for example, 
to program the device in the user state or to separate the devices from other memory regions 
when the MPU is used.

The External PPB does not support unaligned accesses. Since the data width of the bus is
32-bit and APB based, when you’re designing peripherals for this memory region it is 
necessary to make sure that all register addresses in the peripheral are word aligned. In 
addition, when writing software accessing devices in this region, it is recommended that 
you make sure that all the accesses are in word size. The PPB accesses are always in little 
endian.

Signal Group Function
Multiprocessor communication Simple task synchronization signals between multiple processors
(TXEV, RXEV) 

Sleep signals (SLEEPING, SLEEPDEEP) Sleep status for power management

Interrupt status signals (ETMINTNUM, Status of interrupt operation, for ETM operation and debug usage
ETMINTSTATE, CURRPRI)

Reset request (SYSRESETREQ) Resets request output from NVIC

Lockup2 and Halted status Indicate that the processor core has entered a lockup state
(LOCKUP, HALTED)  (caused by error conditions within hard fault handler or NMI 

handler) or a halted state (for debug operations)

Endian input (ENDIAN) Sets the endian of the Cortex-M3 when the core is reset 

ETM interface   Connects to Embedded Trace Macrocell (ETM) for instruction 
trace

ITM’s ATB interface  Advanced Trace Bus (ATB) is a bus protocol in ARM’s CoreSight 
debug architecture for trace data transfer; here this interface 
provides trace data output from Cortex-M3’s Instrumentation 
Trace Macrocell (ITM), which is connected to the Trace Port 
Interface Unit (TPIU)

2 More information on lockup is included in Chapter 12.

Table 6.2 Miscellaneous Interface Signals
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Typical Connections

Because there are a number of bus interfaces on the Cortex-M3 processor, you might fi nd it 
confusing to see how it will connect with other devices such as memory or peripherals. Figure 
6.4 shows a simplifi ed example.

Since the Code memory region can be accessed by the instruction bus (if it is an instruction 
fetch) and from the data bus (if it is a data access), an AHB bus switch called the Bus-Matrix3 
or an AHB bus multiplexer is needed. With the Bus-Matrix, the Flash memory and the 
additional SRAM memory (if implemented) can be accessed by either bus interface. The Bus-
Matrix is available from ARM in the AMBA Development Kit (ADK).4 When both data bus 
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Figure 6.4 Example Cortex-M3 Bus Connections

3 The Bus-Matrix required here is different from the internal BusMatrix inside the Cortex-M3. The Cortex-M3 
internal bus-matrix is specially designed and cannot be used as a general AHB switch.

4 ADK is a collection of AMBA components and example systems in VHDL/Verilog.
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and instruction bus are trying to access the same memory device at the same time, the data bus 
access could be given higher priority for best performance.

Using the AHB Bus-Matrix, if the instruction bus and the data bus are accessing different 
memory devices at the same time (for example, an instruction fetch from fetch and a data bus 
reading data from the additional SRAM), the transfers can be carried out simultaneously.
If a bus multiplexer is used, however, the transfers cannot take place at the same time, but the 
circuit size would be smaller. But common Cortex-M3 microcontroller designs use system 
bus for SRAM connection.

The main SRAM block should be connected via the system bus interface, using the SRAM 
memory address region. This allows data access to be carried out at the same time as 
instruction access. It also allows setting up of Boolean data types by using the bit-band 
feature.

Some microcontrollers might have an external memory interface. That requires an external 
memory controller because you cannot connect off chip memory devices directly to AHB. 
The external memory controller can be connected to the system bus of the Cortex-M3. 
Additional AHB devices can also be easily connected to the system bus without the need for a 
Bus-Matrix.

Simple peripherals can be connected to the Cortex-M3 via an AHB-to-APB bridge. This 
allows the use of the simpler bus protocol APB for peripherals.

The diagram shown in Figure 6.4 is just a very simple example; chip designers might choose 
different bus connection designs. For software/fi rmware development, you will only need to 
know the memory map.

Design blocks shown in the diagram, such as the Bus-Matrix, AHB-to-APB bus bridge, 
memory controller, I/O interface, timer, and UART, are all available from ARM and a number 
of IP providers. Since microcontrollers can have different providers for the peripherals, you 
need to access your microcontroller’s datasheet for the correct programmer model when 
you’re developing software for Cortex-M3 systems.

Reset Signals

The design of reset circuitry on the Cortex-M3 microcontroller or SoC is implementation 
specifi c. In the Cortex-M3 Technical Reference Manual (Ref 1), several reset signals are 
documented. However, the implemented Cortex-M3 chips will likely have only one or two 
reset signals, and the rest will be internally generated by reset generators designed by chip 
vendors. (Refer to the manufacturer datasheet for instructions on how to correctly reset their 
Cortex-M3-based microcontrollers.) At the Cortex-M3 processor level, you can fi nd the reset 
signals shown in Table 6.3.
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Figure 6.5 Reset Generation of Additional Internal Reset Signals in a Typical Cortex-M3 
Microcontroller

Reset Signal Description
Power on reset (PORESETn)  Reset that should be asserted when the device is powered up; 

resets both processor core and debugging system

System reset (SYSRESETn)  System reset; affects processor core, NVIC (except debug control 
registers), and MPU but not the debugging system

Test reset (nTRST) Reset for debugging system

Table 6.3 Various Reset Types on Cortex-M3
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Exceptions
CHAPTER 7

In This Chapter:

● Exception Types
● Defi nitions of Priority
● Vector Tables
● Interrupt Inputs and Pending Behavior
● Fault Exceptions
● SVC and PendSV

Exception Types

The Cortex-M3 provides a feature-packed exception architecture that supports a number 
of system exceptions and external interrupts. Exceptions are numbered 1 to 15 for system 
exceptions and 16 and above for external interrupt inputs. Most of the exceptions have 
programmable priority, and a few have fi xed priority.

Cortex-M3 chips can have different numbers of external interrupt inputs (from 1 to 240) and 
different numbers of priority levels. This is because chip designers can confi gure the Cortex-
M3 design source code for different needs.

Exception types 1 to 15 are system exceptions (there is no exception type 0), as outlined
in Table 7.1. Exceptions of type 16 or above are external interrupt inputs (see Table 7.2).

The value of the current running exception is indicated by the special register IPSR or from 
the NVIC’s Interrupt Control State Register (the VECTACTIVE fi eld).

Note that here the interrupt number (e.g., Interrupt #0) refers to the interrupt inputs to the 
Cortex-M3 NVIC. In actual microcontroller products or SoCs, the external interrupt input pin 
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number might not match the interrupt input number on the NVIC. For example, some of the 
fi rst few interrupt inputs might be assigned to internal peripherals, and external interrupt pins 
could be assigned to the next couple of interrupt inputs. Therefore, you need to check the chip 
manufacturer’s datasheets to determine the numbering of the interrupts.

When an enabled exception occurs but cannot be carried out immediately (for instance, if a 
higher-priority interrupt service routine is running or if the interrupt mask register is set), it 

Exception Exception Type Priority Description
Number
1 Reset �3 (Highest) Reset

2 NMI �2 Nonmaskable interrupt (external NMI input)

3 Hard Fault �1  All fault conditions, if the corresponding fault 
handler is not enabled

4 MemManage Fault Programmable  Memory management fault; MPU violation or access 
to illegal locations

5 Bus Fault Programmable  Bus error; occurs when AHB interface receives an 
error response from a bus slave (also called prefetch 
abort if it is an instruction fetch or data abort if it is a 
data access)

6 Usage Fault Programmable  Exceptions due to program error or trying to access 
coprocessor (the Cortex-M3 does not support a 
coprocessor)

7–10 Reserved NA –

11 SVCall Programmable System Service call

12 Debug Monitor Programmable  Debug monitor (breakpoints, watchpoints, or 
external debug requests)

13 Reserved NA –

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

Table 7.1 List of System Exceptions

Exception Number Exception Type Priority
16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

… … …

255 External Interrupt #239 Programmable

Table 7.2 List of External Interrupts
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will be pended (except for some fault exceptions1). This means that a register (pending status) 
will hold the exception request until the exception can be carried out. This is different from 
traditional ARM processors. Previously, the devices that generate interrupts (such as IRQ/
FIQ) must hold the request until they are served. Now, with the pending registers in the NVIC, 
an occurred interrupt will be handled even if the source requesting the interrupt de-asserts its 
request signal.

Defi nitions of Priority

In the Cortex-M3, whether and when an exception can be carried out can be affected by 
the priority of the exception. A higher-priority (smaller number in priority level) exception 
can preempt a lower-priority (larger number in priority level) exception; this is the nested 
exception/interrupt scenario. Some of the exceptions (reset, NMI, and hard fault) have fi xed 
priority levels. They are negative numbers to indicate that they are higher priority than other 
exceptions. Other exceptions have programmable priority levels.

The Cortex-M3 supports three fi xed highest-priority levels and up to 256 levels of 
programmable priority (a maximum of 128 levels of preemption). However, most Cortex-
M3 chips have fewer supported levels—for example, 8, 16, 32, and so on. When a Cortex-
M3 chip or SoC is being designed, designers can customize it to obtain the number of levels 
required. This reduction of levels is implemented by cutting out the LSB part of the priority 
confi guration registers.

For example, if only 3 bits of priority level are implemented in the design, a priority-level 
confi guration register will look like Figure 7.1.

1 There are a few exceptions for the exception-pending behavior. If a fault takes place and the corresponding fault 
handler cannot be executed immediately because a higher-priority handler is running, the hard fault handler 
(highest priority fault handler) might be executed instead. More details on this topic are covered later in this 
chapter, where we look at fault exceptions; full details can be found in the Cortex-M3 Technical Reference 
Manual and the ARM v7-M Architecture Application Level Reference Manual.

Since bit 4 to bit 0 are not implemented, they are always read as zero, and writes to these bits 
will be ignored. With this setup, we have possible priority levels of 0x00 (high priority), 0x20, 
0x40, 0x60, 0x80, 0xA0, 0xC0, and 0xE0 (the lowest).

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented  Not implemented, read as zero

Figure 7.1 A Priority Level Register with 3-bit Implemented
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Similarly, if 4 bits of priority level are implemented in the design, a priority-level 
confi guration register will look like Figure 7.2.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Implemented   Not implemented, read as 0

Figure 7.2 A Priority Level Register with 4-bit Implemented

If more bits are implemented, more priority levels will be available. However, more priority 
bits can also increase gate counts and hence power consumption. For the Cortex-M3, the 
minimum number of implemented priority register widths is 3 bits (eight levels).
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Figure 7.3 Available Priority Levels with 3-Bit or 4-Bit Priority Width

The reason for removing the LSB of the register instead of the MSB is to make it easier 
to port software from one Cortex-M3 device to another. In this way, a program written for 
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devices with 4-bit priority confi guration registers is likely to be able to run on devices with 
3-bit priority confi guration registers. If the MSB is removed instead of the LSB, you might get 
an inversion of priority arrangement when porting an application from one Cortex-M3 chip 
to another. For example, if an application uses priority level 0x05 for IRQ#0 and level 0x03 
for IRQ#1, IRQ#1 should have higher priority. But when MSB bit 2 is removed, IRQ#0 will 
become level 0x01 and have a higher priority than IRQ#1.

Examples of available exception priority levels for devices with 3-bit, 5-bit, and 8-bit priority 
registers are shown in Table 7.3.

Some readers might wonder, if the priority level confi guration registers are 8 bits wide, why 
there are only 128 preemption levels? This is because the 8-bit register is further divided into 
two parts: preempt priority and subpriority.

Using a confi guration register in the NVIC called Priority Group (a part of the Application 
Interrupt and Reset Control register in the NVIC, see Table 7.5), the priority-level confi guration 
registers for each exception with programmable priority levels is divided into two halves. The 
upper half (left bits) is the preempt priority, and the lower half (right bits) is the subpriority 
(see Table 7.4).

The preempt priority level defi nes whether an interrupt can take place when the processor is 
already running another interrupt handler. The subpriority level value is used only when two 
exceptions with same preempt priority level occur at the same time. In this case, the exception 
with higher subpriority (lower value) will be handled fi rst.

As a result of the priority grouping, the maximum width of preempt priority is 7, so there can 
be 128 levels. When the priority group is set to 7, all exceptions with a programmable priority 

Priority Exception Devices with 3-Bit Devices with 5-Bit Devices with 8-Bit
Level  Type Priority Confi guration Priority Confi guration Priority Confi guration
  Registers Registers Registers
�3 (Highest) Reset �3 �3 �3

�2 NMI �2 �2 �2

�1 Hard fault �1 �1 �1

0, Exceptions with 0x00 0x00 0x00, 0x01
 programmable
 priority level
1,  0x20 0x08 0x02, 0x03
…  … … …
0xFF  0xE0 0xF8 0xFE, 0xFE

Table 7.3 Available Priority Levels for Devices with 3-bit, 5-bit, 
and 8-bit Priority Level Registers
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level will be in the same level, and no preemption between these exceptions will take place, 
except that hard fault, NMI, and reset, which have priority of �1, �2, and �3, respectively, 
can preempt these exceptions.

When deciding the effective preempt priority level and subpriority level, you must take these 
factors into account:

• Implemented priority-level confi guration registers

• Priority group setting

For example, if the width of the confi guration registers is 3 (bit 7 to bit 5 are available) and 
priority group is set to 5, you can have four levels of preempt priority levels (bit 7 to bit 6), 
and inside each preempt level there are two levels of subpriority (bit 5).

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Table 7.4 Defi nition of Preempt Priority Field and Subpriority Field 
in a Priority Level Register in Different Priority Group Settings

Bits Name Type Reset Description
   Value
31:16 VECTKEY R/W –  Access key; 0x05FA must be written to this fi eld to write 

to this register, otherwise the write will be ignored; the 
read-back value of the upper half word is 0xFA05

15 ENDIANNESS R –  Indicates endianness for data: 1 for big endian (BE8) 
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ W – Requests chip control logic to generate a reset

1 VECTCLRACTIVE W –  Clears all active state information for exceptions; 
typically used in debug or OS to allow system to recover 
from system error (Reset is safer)

0 VECTRESET W –  Resets the Cortex-M3 processor (except debug logic), 
but this will not reset circuits outside the processor

Table 7.5 Application Interrupt and Reset Control Register (Address 0xE000ED0C)
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Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt  Sub
priority  priority

Figure 7.4 Defi nition of Priority Fields in a 3-bit Priority Level 
Register with Priority Group Set to 5

With the setting as shown in Figure 7.4, the available priority levels are illustrated in Figure 
7.5. For the same design, if the priority group is set to 0x1, there can be only eight preempt 
priority levels and no further subpriority levels inside each preempt level. (Bit[1:0] of preempt 
priority is always 0.) The defi nition of the priority level confi guration registers is shown in 
Figure 7.6, and the available priority levels are illustrated in Figure 7.7.

If a Cortex-M3 device has implemented all 8 bits in the priority-level confi guration registers, 
the maximum number of preemption levels it can have is only 128, using a priority group 
setting of 0. The priority fi elds defi nition is shown in Figure 7.8.
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Figure 7.5 Available Priority Levels with 3-Bit Priority Width and Priority Group Set to 5
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When two interrupts are asserted at the same time with exactly the same preempt priority 
level as well as subpriority level, the interrupt with the smaller exception number has higher 
priority. (IRQ #0 has higher priority than IRQ #1.)

To avoid unexpected changes of priority levels for interrupts, be careful when writing to the 
Application Interrupt and Reset Control register (address 0xE000ED0C). In most cases, after 
the priority group is confi gured, there is no need to use this register except to generate a reset 
(see Table 7.5).
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Figure 7.7 Available Priority Levels with 3-Bit Priority Width and Priority Group Set to 1

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt priority[5:3] Preempt priority  Subpriority
   bit[2:0] (always 0) (always 0)

Figure 7.6 Defi nition of Priority Fields in an 8-bit Priority Level Register with 
Priority Group Set to 1
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Since the address 0x0 should be boot code, usually it will either be Flash memory or ROM 
devices, and the value cannot be changed at run time. However, the vector table can be 
relocated to other memory locations in the Code or RAM region where the RAM is so that we 
can change the handlers during run time. This is done by setting a register in the NVIC called 
the vector table offset register (address 0xE000ED08). The address offset should be aligned 
to the vector table size, extended to the power of 2. For example, if there are 32 IRQ inputs, 
the total number of exceptions will be 32 � 16 (system exceptions) � 48. Extending it to the 
power of 2 makes it 64. Multiplying it by 4 makes it 256 (0x100). Therefore, the vector table 
offset can be programmed as 0x0, 0x100, 0x200, and so on. The vector table offset register 
contains the items shown in Table 7.7.

In applications where you want to allow dynamic changing of exception handlers, in the 
beginning of the boot image you need to have these (at a minimum):

• Initial Main Stack Pointer value

• Reset vector

Figure 7.8 Defi nition of Priority Fields in an 8-bit Priority Level Register with Priority 
Group Set to 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt priority     Subpriority

Address Exception Number Value (Word Size)
0x00000000 – MSP initial value

0x00000004 1 Reset vector (program counter initial value)

0x00000008 2 NMI handler starting address

0x0000000C 3 Hard fault handler starting address

… … Other handler starting address

Table 7.6 Exception Vector Table After Power Up

Bits Name Type Reset Value Description
29 TBLBASE R/W 0 Table base in Code (0) or RAM (1)

28:7 TBLOFF R/W 0 Table offset value from Code region or RAM region

Table 7.7 Vector Table Offset Register (Address 0xE000ED08)

Vector Tables

When an exception takes place and is being handled by the Cortex-M3, the processor will 
need to locate the starting address of the exception handler. This information is stored in 
the vector table. By default, the vector table starts at address zero, and the vector address is 
arranged according to the exception number times 4 (see Table 7.6).
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• NMI vector

• Hard fault vector

These are required because the NMI and hard fault can potentially occur during your boot 
process. Other exceptions cannot take place until they are enabled.

When the booting process is done, you can defi ne a part of your SRAM as the new vector 
table and relocate the vector table to the new one, which is writable.

Interrupt Inputs and Pending Behavior

This section describes the behavior of IRQ inputs and pending behavior. It also applies to 
NMI input, except that an NMI will be executed immediately in most cases, unless the core 
is already executing an NMI handler, halted by a debugger, or locked up due to some serious 
system error.

When an interrupt input is asserted, it will be pended. Even if the interrupt source de-asserts 
the interrupt, the pended interrupt status will still cause the interrupt handler to be executed 
when the priority is allowed.

However, if the pending status is cleared before the processor starts responding to the 
pended interrupt (for example, because pending status register is cleared while PRIMASK/
FAULTMASK is set to 1), the interrupt can be canceled (Figure 7.9). The pending status of 
the interrupt can be accessed in the NVIC and is writable, so you can clear a pending interrupt 
or use software to pend a new interrupt by setting the pending register.

When the processor starts to execute an interrupt, the interrupt becomes active and the 
pending bit will be cleared automatically (Figure 7.10). When an interrupt is active, you 
cannot start processing the same interrupt again until the interrupt service routine is terminated 
with an interrupt return (also called an exception exit, as discussed in Chapter 9). Then the 

Interrupt
Request

Interrupt
Pending Status

Processor
Mode

Thread
Mode

Handler Mode

Figure 7.8 Interrupt Pending
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active status is cleared and the interrupt can be processed again if the pending status is 1. It is 
possible to re-pend an interrupt before the end of the interrupt service routine.

Pending status
cleared by software

Interrupt
Request

Interrupt
Pending Status

Processor
Mode

Thread
Mode

Figure 7.9 Interrupt Pending Cleared Before Processor Takes Action

Interrupt
Request

Interrupt
Pending Status

Processor
Mode

Thread
Mode

Handler Mode

Interrupt
Active Status

Interrupt request
cleared by software

Interrupt returned

Figure 7.10 Interrupt Active Status Set as Processor Enters Handler

If an interrupt source continues to hold the interrupt request signal active, the interrupt will be 
pended again at the end of the interrupt service routine as shown in Figure 7.11. This is just 
like the traditional ARM7TDMI.

If an interrupt is pulsed several times before the processor starts processing it, it will be treated 
as one single interrupt request as illustrated in Figure 7.12.

If an interrupt is de-asserted and then pulsed again during the interrupt service routine, it will 
be pended again as shown in Figure 7.13.
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Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can 
then trigger the interrupt sequence when the enable is set later. As a result, before enabling an 
interrupt, it could be useful to check whether the pending register has been set. The interrupt 
source might have been activated previously and have set the pending status. If necessary, you 
can clear the pending status before you enable an interrupt.

Interrupt
Request

Interrupt
Pending Status

Processor
Mode

Thread
Mode

Handler Mode

Interrupt
Active Status

Interrupt request stays active

Interrupt re-entered

Interrupt returned

Figure 7.11 Continuous Interrupt Request Pends Again After Interrupt Exit
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Interrupt returned

Multiple interrupt pulses
before entering ISR

Figure 7.12 Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler
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Fault Exceptions

A number of system exceptions are useful for fault handling. There are several categories of 
faults:

• Bus faults

• Memory management faults

• Usage faults

• Hard faults

Bus Faults

Bus faults are produced when an error response is received during a transfer on the AHB 
interfaces. It can happen at these stages:

• Instruction fetch, commonly called prefetch abort

• Data read/write, commonly called data abort

In the Cortex-M3, bus faults can also occur during a:

• Stack PUSH in the beginning of interrupt processing, called a stacking error

• Stack POP at the end of interrupt processing, called an unstacking error

Interrupt
Request

Interrupt
Pending Status

Processor
Mode

Thread
Mode

Handler Mode

Interrupt
Active Status

Interrupt returned

Interrupt request
pulsed again

Interrupt re-entered

Interrupt
pended
again

Figure 7.13 Interrupt Pending Occurs Again During the Handler
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• Reading of an interrupt vector address (vector fetch) when the processor starts the 
interrupt-handling sequence (a special case classifi ed as a hard fault)

What Can Cause AHB Error Responses?

Bus faults occur when an error response is received on the AHB bus. The common 
causes are as follows:

• Attempts to access an invalid memory region (for example, a memory location 
with no memory attached)

• Device is not ready to accept a transfer (for example, trying to access SDRAM 
without initializing the SDRAM controller)

• Trying to carry out a transfer with a transfer size not supported by the target 
device (for example, doing a byte access to a peripheral register that must be 
accessed as a word)

• The device does not accept the transfer for various reasons (for example, a 
peripheral that can only be programmed at the privileged access level)

When these types of bus faults (except vector fetches) take place, and if the bus fault handler 
is enabled and no other exceptions with the same or higher priority are running, the bus 
fault handler will be executed. If the bus fault handler is enabled but at the same time the 
core receives another exception handler with higher priority, the bus fault exception will be 
pending. Finally, if the bus fault handler is not enabled or when the bus fault happens in an 
exception handler that has the same or higher priority than the bus fault handler, the hard fault 
handler will be executed instead. If another bus fault takes place when running the hard fault 
handler, the core will enter a lockup state.2

To enable the bus fault handler, you need to set the BUSFAULTENA bit in the System Handler 
Control and State register in the NVIC. Before doing that, make sure that the bus fault handler 
starting address is set up in the vector table if the vector table has been relocated to RAM.

So, how do you fi nd out what went wrong when the processor entered the bus fault handler? 
The NVIC has a number of fault status registers. One of them is the Bus Fault Status Register 
(BFSR). From this register the bus fault handler can fi nd out if the fault was caused by data/
instruction access or an interrupt stacking or unstacking operation.

For precise bus faults, the offending instruction can be located by the stacked program 
counter, and if the BFARVALID bit in BFSR is set, it is also possible to determine the 
memory location that caused the bus fault. This is done by reading another NVIC register 

2 More information on the lockup state is covered in Chapter 12.
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called the Bus Fault Address Register (BFAR). However, the same information is not 
available for imprecise bus faults because by the time the processor receives the error, the 
processor could have already executed a number of other instructions.

Precise and Imprecise Bus Faults

Bus faults caused by data accesses can be further classifi ed as precise or imprecise. In 
imprecise bus faults, the fault is caused by an already completed operation (such as a 
buffered write) that might have occurred a number of clock cycles ago. Precise bus faults 
are caused by the last completed operation—for example, a memory read is precise on 
the Cortex-M3 because the instruction cannot be completed until it receives the data.

The programmer’s model for BFSR is as follows: It is 8 bits wide and can be accessed via 
byte transfer or with a word transfer to address 0xE000ED28 with BFSR in the second byte 
(see Table 7.8). The error indication bit is cleared when a 1 is written to it.

Memory Management Faults

Memory management faults can be caused by memory accesses that violate the setup in the 
MPU or by certain illegal accesses (for example, trying to execute code from nonexecutable 
memory regions), which can trigger the fault, even if no MPU is presented.

Some of the common MPU faults include these:

• Access to memory regions not defi ned in MPU setup

• Writing to read-only regions

• An access in the user state to a region defi ned as privileged access only

When a memory management fault occurs, and if the memory management handler is enabled, 
the memory management fault handler will be executed. If the fault occurs at the same time a 

Bits Name Type Reset Value Description
7 BFARVALID – 0 Indicates BFAR is valid

6:5 – – – –

4 STKERR R/Wc 0 Stacking error

3 UNSTKERR R/Wc 0 Unstacking error

2 IMPREISERR R/Wc 0 Imprecise data access violation

1 PRECISERR R/Wc 0 Precise data access violation

0 IBUSERR R/Wc 0 Instruction access violation

Table 7.8 Bus Fault Status Register (0xE000ED29)
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higher-priority exception takes place, the other exceptions will be handled fi rst and the memory 
management fault will be pended. If the processor is already running an exception handler with 
same or higher priority or if the memory management fault handler is not enabled, the hard 
fault handler will be executed instead. If a memory management fault takes place inside the 
hard fault handler or the NMI handler, the processor will enter the lockup state.

Like the bus fault handler, the memory management fault handler needs to be enabled. This 
is done by the MEMFAULTENA bit in the System Handler Control and State register in the 
NVIC. If the vector table has been relocated to RAM, the memory management fault handler 
starting address should be set up in the vector table fi rst.

The NVIC contains a Memory Management Fault Status Register (MFSR) to indicate the 
cause of the memory management fault. If the status register indicates that the fault is a data 
access violation (DACCVIOL bit) or an instruction access violation (IACCVIOL bit), the 
offending code can be located by the stacked program counter. If the MMARVALID bit in the 
MFSR is set, it is also possible to determine the memory address location that caused the fault 
from the Memory Management Address Register (MMAR) in the NVIC.

The programmer’s model for the MFSR is shown in Table 7.9. It is 8 bits wide and can be 
accessed via byte transfer or with a word transfer to address 0xE000ED28, with the MFSR 
in the lowest byte. As with other fault status registers, the fault status bit can be cleared by 
writing 1 to the bit.

Usage Faults

Usage faults can be caused by a number of things:

• Undefi ned instructions

• Coprocessor instructions (the Cortex-M3 processor does not support a coprocessor, 
but it is possible to use the fault exception mechanism to run software compiled for 
other Cortex processors via coprocessor emulation)

Bits Name Type Reset Value Description
7 MMARVALID – 0 Indicates the MMAR is valid

6:5 – – – –

4 MSTKERR R/Wc 0 Stacking error

3 MUNSTKERR R/Wc 0 Unstacking error

2 – – – –

1 DACCVIOL R/Wc 0 Data access violation

0 IACCVIOL R/Wc 0 Instruction access violation

Table 7.9 Memory Management Fault Status Register (0xE000ED28)
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• Trying to switch to the ARM state (software can use this faulting mechanism to test 
whether the processor it is running on supports ARM code; since the Cortex-M3 does 
not support the ARM state, a usage fault takes place if there’s an attempt to switch)

• Invalid interrupt return (Link Register contains invalid/incorrect values)

• Unaligned memory accesses using multiple load or store instructions

It is also possible, by setting up certain control bits in the NVIC, to generate usage faults for:

• Divide by zero

• Any unaligned memory accesses

When a usage fault occurs and if the usage fault handler is enabled, normally the usage fault 
handler will be executed. However, if at the same time a higher-priority exception takes place, 
the usage fault will be pended. If the processor is already running an exception handler with 
the same or higher priority or if the usage fault handler is not enabled, the hard fault handler 
will be executed instead. If a usage fault takes place inside the hard fault handler or the NMI 
handler, the processor will enter the lockup state.

The usage fault handler is enabled by setting the USGFAULTENA bit in the System Handler 
Control and State register in the NVIC. If the vector table has been relocated to RAM, the 
usage fault handler starting address should be set up in the vector table fi rst.

The NVIC provides a Usage Fault Status Register (UFSR) for the usage fault handler to 
determine the cause of the fault. Inside the handler, the program code that causes the error can 
also be located using the stacked program counter value.

Accidentally Switching to the ARM State

One of the most common causes of usage faults is accidentally trying to switch the 
processor to ARM mode. This can happen if you load a new value to PC with the 
LSB equal to 0—for example, if you try to branch to an address in a register (BX LR) 
without setting the LSB, have zero in the LSB of a vector in the exception vector table, 
or the stacked PC value to be read by POP {PC} is modifi ed manually, leaving the LSB 
cleared. When these situations happen, the usage fault exception will take place with the 
INVSTATE bit in the UFSR set.

The UFSR is shown in Table 7.10. It occupies 2 bytes and can be accessed by half word 
transfer or as a word transfer to address 0xE000ED28 with the UFSR in the upper half word. 
As with other fault status registers, the fault status bit can be cleared by writing 1 to the bit.
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Hard Faults

The hard fault handler can be caused by usage faults, bus faults, and memory management 
faults if their handler cannot be executed. In addition, it can also be caused by a bus fault 
during vector fetch (reading of a vector table during exception handling). In the NVIC there 
is a hard fault status register that can be used to determine whether the fault was caused by a 
vector fetch. If not, the hard fault handler will need to check the other fault status registers to 
determine the cause of the hard fault.

Details of the Hard Fault Status Register (HFSR) are shown in Table 7.11. As with other fault 
status registers, the fault status bit can be cleared by writing 1 to the bit.

Dealing with Faults

During software development, we can use the Fault Status Registers (FSRs) to determine 
the causes of errors in the program and correct them. A troubleshooting guide is included 
in Appendix E of this book for common causes of various faults. In a real running system, 
the situation is different. After the cause of a fault is determined, the software will have to 
decide what to do next. In systems that run an OS, the offending tasks or applications could 

Bits Name Type Reset Value Description
9 DIVBYZERO R/Wc 0  Indicates a divide by zero has taken place (can be set 

only if DIV_0_TRP is set)

8 UNALIGNED R/Wc 0 Indicates that an unaligned access fault has taken place

7:4 – – – –

3 NOCP R/Wc 0 Attempts to execute a coprocessor instruction

2 INVPC R/Wc 0  Attempts to do an exception with a bad value in the 
EXC_RETURN number

1 INVSTATE R/Wc 0 Attempts to switch to an invalid state (e.g., ARM)

0 UNDEFINSTR R/Wc 0 Attempts to execute an undefi ned instruction

Table 7.10 Usage Fault Status Register (0xE000ED2A)

Bits Name Type Reset Value Description
31 DEBUGEVT R/Wc 0 Indicates hard fault is triggered by debug event

30 FORCED R/Wc 0  Indicates hard fault is taken because of bus fault, 
memory management fault, or usage fault

29:2 – – – –

1 VECTBL R/Wc 0 Indicates hard fault is caused by failed vector fetch

0 – – – –

Table 7.11 Hard Fault Status Register (0xE000ED2C)
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be terminated. In some other cases, the system might need a reset. The requirements of fault 
recovery depend on the target application. Doing it properly could make the product more 
robust, but it is best to prevent the faults from happening in the fi rst place. Here are some 
fault-handling methods:

• Reset: This can be carried out using the VECTRESET control bit in the Application 
Interrupt and Reset Control register in the NVIC. This will reset the processor but not 
the whole chip. Depending on the chip’s reset design, some Cortex-M3 chips can
be reset using the SYSRESETREQ in the same register. This could provide a full 
system reset.

• Recovery: In some cases it might be possible to resolve the problem that caused the 
fault exception. For example, in the case of coprocessor instructions, the problem can 
be resolved using coprocessor emulation software.

• Task termination: For systems running an OS, it is likely that the task that caused the 
fault will be terminated and restarted if needed.

The FSRs retain their status until they are cleared manually. Fault handlers should clear the 
fault status bit they have dealt with. Otherwise, the next time another fault takes place, the 
fault handler will be invoked again and could mistake that the fi rst fault still exists and so will 
try to deal with it again. The FSRs use a write-to-clear mechanism (clear by writing 1 to the 
bits that need to be cleared).

Chip manufacturers can also include an auxiliary FSR in the chip to indicate other
fault situations. The implementation of an AFSR depends on individual chip design 
requirements.

SVC and PendSV

SVC (System Service Call) and PendSV (Pended System Call) are two exceptions targeted 
at software and operating systems. SVC is for generating system function calls. For example, 
instead of allowing user programs to directly access hardware, an operating system may 
provide access to hardware via an SVC. So when a user program wants to use certain hardware, 
it generates the SVC exception using SVC instructions, and then the software exception handler 
in the operating system is executed and provides the service the user application requested. In 
this way, access to hardware is under the control of the OS, which can provide a more robust 
system by preventing the user applications from directly accessing hardware.

SVC can also make software more portable because the user application does not need to 
know the programming details of the hardware. The user program will only need to know the 
Application Programming Interface (API) function ID and parameters; the actual hardware-
level programming is handled by device drivers.
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SVC is generated using the SVC instruction. An immediate value is required for this 
instruction, which works as a parameter-passing method. The SVC exception handler can then 
extract the parameter and determine what action it needs to perform. For example:

SVC 0x3 ; Call SVC function 3

When the SVC handler is executed, you can determine the immediate data value in the SVC 
instruction by reading the stacked Program Counter value, then reading the instruction from 
that address and masking out the unneeded bits. If the system uses a PSP for user applications, 
you might need to determine which stack was used fi rst. This can be determined from the link 
register value when the handler is entered. (This topic is covered in more depth in Chapter 8).

SVC and SWI (ARM7)

If you have used traditional ARM processors (such as the ARM7), you might know that 
they have a software interrupt instruction (SWI). The SVC has a similar function, and 
in fact the binary encoding of SVC instructions is the same as SWI in ARM7. However, 
since the exception model has changed, this instruction is renamed to make sure that 
programmers will properly port software code from ARM7 to the Cortex-M3.

SVC

Unprivileged

Privileged

User
Program

Operating System

API
Device
Drivers Peripherals

Hardware
Kernel

Figure 7.14 SVC as a Gateway for OS Functions

Due to the interrupt priority model in the Cortex-M3, you cannot use SVC inside an SVC 
handler (because the priority is the same as the current priority). Doing so will result in a usage 
fault. For the same reason, you cannot use SVC in an NMI handler or a hard fault handler.

PendSV (Pended System Call) works with SVC in the OS. Although SVC (by SVC 
instruction) cannot be pended (an application calling SVC will expect the required task to 
be done immediately), PendSV can be pended and is useful for an OS to pend an exception 
so that an action can be performed after other important tasks are completed. PendSV is 
generated by writing 1 to the NVIC PendSV pending register.
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A typical use of PendSV is context switching (switching between tasks). For example, a 
system might have two active tasks, and context switching can be triggered by:

• Calling an SVC function

• The system timer (SYSTICK)

Let’s look at a simple example of having only two tasks in a system, and a context switch is 
triggered by SYSTICK exceptions (see Figure 7.15).

Task A Task B

OS

Priority

OS

Task A

OSOSSYSTICK

Thread

IRQ

Context
switching

Context
switching

Context
switching

Time

Figure 7.15 A Simple Scenario Using SYSTICK to Switch Between Two Tasks

If an interrupt request takes place before the SYSTICK exception, the SYSTICK exception 
will preempt the IRQ handler. In this case, the OS should not carry out the context switching. 
Otherwise the IRQ handler process will be delayed, and for the Cortex-M3, a usage fault 
could be generated if the OS tries to switch to Thread mode when an interrupt is active.

Task A Task B

IRQ IRQ

Priority

OS

Task A

OSOSSYSTICK

Thread

IRQ

Context switching Context switching

Usage fault: return to
thread with active interrupt

IRQ processing
delayed

Time

Figure 7.16 Problem with Context Switching at the IRQ
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To avoid the problem of delaying the IRQ processing, some OS implementations carry out 
only context switching if they detect that none of the IRQ handlers are being executed. 
However, this can result in a very long delay for task switching, especially if the frequency of 
an interrupt source is close to that of the SYSTICK exception.

The PendSV exception solves the problem by delaying the context-switching request until all 
other IRQ handlers have completed their processing. To do this, the PendSV is programmed as the 
lowest priority exception. If the OS detects that an IRQ is currently active (IRQ handler running 
and preempted by SYSTICK), it defers the context switching by pending the PendSV exception.

Priority

SYSTICK

Interrupt

SVC and
PendSV

Thread

Time

Task A Task B Task A

[1]
[2]

[3] [4]

[5]

[6]

[7]
[8]

[9]

[10]

Context switch
in PendSV

ISR continuesISR started

SYSTICK (OS)

SVC (OS) pend
PendSV

Context
switch in
PendSV

ISR completed

Interrupt
occurred

Figure 7.17 Example Context Switching with PendSV

 1. Task A calls SVC for task switching (for example, waiting for some work to complete).

 2. The OS receives the request, prepares for context switching, and pends the PendSV 
exception.

 3. When the CPU exits SVC, it enters PendSV immediately and does the context switch.

 4. When PendSV fi nishes and returns to Thread level, it executes Task B.

 5. An interrupt occurs and the interrupt handler is entered.

 6. While running the interrupt handler routine, a SYSTICK exception (for OS tick) takes place.

 7. The OS carries out the essential operation, then pends the PendSV exception and gets 
ready for the context switch.

 8. When the SYSTICK exception exits, it returns to the interrupt service routine.

 9. When the interrupt service routine completes, the PendSV starts and does the actual 
context switch operations.

10. When PendSV is complete, the program returns to Thread level; this time it returns to 
Task A and continues the processing.
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The NVIC and Interrupt Control
CHAPTER 8

In This Chapter:

● NVIC Overview
● The Basic Interrupt Confi guration
● Interrupt Enable and Clear Enable
● Interrupt Pending and Clear Pending
● Example Procedures in Setting Up an Interrupt
● Software Interrupts
● The SYSTICK Timer

NVIC Overview

As we’ve seen, the Nested Vectored Interrupt Controller, or NVIC, is an integrated part of 
the Cortex-M3 processor. It is closely linked to the Cortex-M3 CPU core logic. Its control 
registers are accessible as memory-mapped devices. Besides control registers and control 
logic for interrupt processing, the NVIC also contains control registers for the MPU, the 
SYSTICK Timer, and debugging controls. In this chapter we’ll examine the control logic for 
interrupt processing. MPU and debugging control logic are discussed in later chapters.

The NVIC supports 1 to 240 external interrupt inputs (commonly known as IRQs). The exact 
number of supported interrupts is determined by the chip manufacturers when they develop 
their Cortex-M3 chips. In addition, the NVIC also has a Nonmaskable Interrupt (NMI) input. 
The actual function of the NMI is also decided by the chip manufacturer. In some cases this 
NMI cannot be controlled from an external source.

The NVIC can be accessed as memory location 0xE000E000. Most of the interrupt control/
status registers are accessible only in privileged mode, except the Software Trigger Interrupt 
register, which can be set up to be accessible in user mode. The interrupt control/status register 
can be accessed in word, half word, or byte transfers.  

In addition, a few other interrupt-masking registers are also involved in the interrupts. They are 
the “special registers” covered in Chapter 3 and are accessed via MRS and MSR instructions.
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The Basic Interrupt Confi guration

Each external interrupt has several registers associated with it:

• Enable and clear enable registers

• Set-pending and clear-pending registers

• Priority level

• Active status

In addition, a number of other registers can also affect the interrupt processing:

• Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)

• Vector Table Offset register

• Software Trigger Interrupt register

• Priority Group

Interrupt Enable and Clear Enable

The Interrupt Enable register is programmed via two addresses. To set the enable bit, you 
need to write to the SETENA register address; to clear the enable bit, you need to write to the 
CLRENA register address. In this way, enabling or disabling an interrupt will not affect other 
interrupt enable states. The SETENA/CLRENA registers are 32 bits wide; each bit represents 
one interrupt input.

Since there could be more than 32 external interrupts in the Cortex-M3 processor, you 
might fi nd more than one SETENA and CLRENA register—for example, SETENA0, 
SETENA1, and so on (see Table 8.1). Only the enable bits for interrupts that exist are 
implemented. So if you only have 32 interrupt inputs, you will only have SETENA0 and 
CLRENA0. The SETENA and CLRENA registers can be accessed as word, half word, or 
byte. Since the fi rst 16 exception types are system exceptions, external interrupt #0 has a start 
exception number of 16 (see Table 7.2).

Interrupt Pending and Clear Pending

If an interrupt takes place but cannot be executed immediately (for instance, if 
another higher-priority interrupt handler is running), it will be pended. The interrupt-
pending status can be accessed through the Interrupt Set Pending (SETPEND) and Interrupt 
Clear Pending (CLRPEND) registers. Similarly to the enable registers, the pending status 
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Table 8.1 Interrupt Set Enable Registers and Interrupt Clear Enable Registers 
(0xE000E100-0xE000E11C, 0xE000E180-0xE000E19C)

Address Name Type Reset Value Description

0xE000E100 SETENA0 R/W 0 Enable for external interrupt #0–31

    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …

    bit[31] for interrupt #31 (exception #47)

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E104 SETENA1 R/W 0 Enable for external interrupt #32–63

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E108 SETENA2 R/W 0 Enable for external interrupt #64–95

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

… – – – –

0xE000E180 CLRENA0 R/W 0 Clear enable for external interrupt #0–31

    bit[0] for interrupt #0

    bit[1] for interrupt #1

    …

    bit[31] for interrupt #31

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

0xE000E184 CLRENA1 R/W 0 Clear Enable for external interrupt #32–63

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

0xE000E188 CLRENA2 R/W 0 Clear enable for external interrupt #64–95

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

… – – – –

controls might contain more than one register if there are more than 32 external interrupt 
inputs.

The pending status registers can be changed, so you can cancel a current pended exception or 
generate software interrupts via the SETPEND register (see Table 8.2).
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Priority Levels

Each external interrupt has an associated priority-level register, which has a maximum width 
of 8 bits and a minimum width of 3 bits. As described in the previous chapter, each register 
can be further divided into preempt priority level and subpriority level based on priority group 
settings. The priority-level registers can be accessed as byte, half word, or word. The number of 

Address Name Type Reset Value Description
0xE000E200 SETPEND0 R/W 0 Pending for external interrupt #0–31

    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …

    bit[31] for interrupt #31 (exception #47)

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E204 SETPEND1 R/W 0 Pending for external interrupt #32–63

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E208 SETPEND2 R/W 0 Pending for external interrupt #64–95

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

… – – – –

0xE000E280 CLRPEND0 R/W 0 Clear pending for external interrupt #0–31

    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …

    bit[31] for interrupt #31 (exception #47)

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current pending status

0xE000E284 CLRPEND1 R/W 0 Clear pending for external interrupt #32–63

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current pending status

0xE000E288 CLRPEND2 R/W 0 Clear pending for external interrupt #64–95

    Write 1 to clear bit to 1; write 0 has no effect

    Read value indicates the current pending status

… – – – –

Table 8.2 Interrupt Set Pending Registers and Interrupt Clear Pending Registers 
(0xE000E200-0xE000E21C, 0xE000E280-0xE000E29C)

CH08-H8534.indd   140CH08-H8534.indd   140 7/19/07   1:32:48 PM7/19/07   1:32:48 PM



The NVIC and Interrupt Control

141

priority-level registers depends on how many external interrupts the chip contains (see Table 
8.3). The priority level confi guration registers details can be found in Appendix D, Table D.18.

Table 8.3 Interrupt Priority-Level Registers (0xE000E400-0xE000E4EF)

Address Name Type Reset Value Description
0xE000E400 PRI_0 R/W 0 (8-bit) Priority-level external interrupt #0

0xE000E401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

… – – – –

0xE000E41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

… – – – –

Active Status

Each external interrupt has an active status bit. When the processor starts the interrupt 
handler, the bit is set to 1 and cleared when the interrupt return is executed. However, during 
an interrupt service routine execution, a higher-priority interrupt might occur and cause 
a preemption. During this period, despite the fact that the processor is executing another 
interrupt handler, the previous interrupt is still defi ned as active. The active registers are 
32-bit but can also be accessed using half word or byte-size transfers. If there are more than 
32 external interrupts, there will be more than one active register. The active status registers 
for external interrupts are read-only (see Table 8.4).

Table 8.4 Interrupt Active Status Registers (0xE000E300-0xE000E31C)

Address Name Type Reset Value Description

0xE000E300 ACTIVE0 R 0 Active status for external interrupt #0–31

    bit[0] for interrupt #0

    bit[1] for interrupt #1

    …

    bit[31] for interrupt #31

0xE000E304 ACTIVE1 R 0 Active status for external interrupt #32–63

… – – – –

PRIMASK and FAULTMASK Special Registers

The PRIMASK register is used to disable all exceptions except NMI and hard fault. It 
effectively changes the current priority level to 0 (highest programmable level). This register 
is programmable using MRS and MSR instructions. For example:

     MOV    R0, #1
     MSR    PRIMASK, R0   ; Write 1 to PRIMASK to disable all 
                          ; interrupts
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and:

     MOV    R0, #0
     MSR    PRIMASK, R0   ; Write 0 to PRIMASK to allow interrupts

PRIMASK is useful for temporarily disabling all interrupts for critical tasks. When PRIMASK 
is set, if a fault takes place, the hard fault handler will be executed.

FAULTMASK is just like PRIMASK except that it changes the effective current priority level 
to �1 so that even the hard fault handler is blocked. Only the NMI can be executed when 
FAULTMASK is set.

FAULTMASK is cleared automatically upon exiting the exception handler. Both 
FAULTMASK and PRIMASK registers cannot be set in the user state.

The BASEPRI Special Register

In some cases you might want to disable interrupts only with priority lower than a certain 
level. In this case, you could use the BASEPRI register. To do this, simply write the 
required masking priority level to the BASEPRI register. For example, if you want to block 
all exceptions with priority level equal to or lower than 0x60, you can write the value to 
BASEPRI:

     MOV    R0, #0x60
     MSR    BASEPRI, R0   ; Disable interrupts with priority 
                          ; 0x60-0xFF

To cancel the masking, just write 0 to the BASEPRI register:

     MOV    R0, #0x0
     MSR    BASEPRI, R0   ; Turn off BASEPRI masking

The BASEPRI register can also be accessed using the BASEPRI_MAX register name. It is 
actually the same register, but when you use it with this name it will give you a conditional 
write operation. (As far as hardware is concerned, BASEPRI and BASEPRI_MAX are the 
same register, but in the assembler code they use different register name coding.) When you 
use BASEPRI_MAX as a register, it can only be changed to a higher priority level; it cannot 
be changed to lower priority levels. For example, consider the following instruction sequence:

     MOV    R0, #0x60
     MSR    BASEPRI_MAX, R0   ; Disable interrupts with priority 
                              ; 0x60, 0x61,..., etc
     MOV    R0, #0xF0
     MSR    BASEPRI_MAX, R0   ; This write will be ignored because 
                              ; it is lower
                              ; level than 0x60
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     MOV    R0, #0x40
     MSR    BASEPRI_MAX, R0   ; This write is allowed and change the
                              ; masking level to 0x40

To change to a lower masking level or disable the masking, the BASEPRI register name 
should be used. The BASEPRI/ BASEPRI_MAX register cannot be set in the user state.

As with other priority-level registers, the formatting of the BASEPRI register is affected by the 
number of implemented priority register widths. For example, if only 3 bits are implemented 
for priority-level registers, BASEPRI can be programmed as 0x00, 0x20, 0x40 … 0xC0, 0xE0.

Confi guration Registers for Other Exceptions

Usage faults, memory management faults, and bus fault exceptions are enabled by the System 
Handler Control and State Register (0xE000ED24). The pending status of faults and active 
status of most system exceptions are also available from this register (see Table 8.5).

Table 8.5 The System Handler Control and State Register (0xE000ED24)

Bits Name Type Reset Value Description
18 USGFAULTENA R/W 0 Usage fault handler enable

17 BUSFAULTENA R/W 0 Bus fault handler enable

16 MEMFAULTENA R/W 0 Memory management fault enable

15 SVCALLPENDED R/W 0 SVC pended; SVCall was started but was 
    replaced by a higher-priority exception

14 BUSFAULTPENDED R/W 0 Bus fault pended; bus fault handler was 
    started but was replaced by a higher-priority 
    exception

13 MEMFAULTPENDED R/W 0 Memory management fault pended; 
    memory management fault started but was 
    replaced by a higher-priority exception

12 USGFAULTPENDED R/W 0  Usage fault pended; usage fault started but 
was replaced by a higher-priority exception

11 SYSTICKACT R/W 0 Read as 1 if SYSTICK exception is active

10 PENDSVACT R/W 0 Read as 1 if PendSV exception is active

8 MONITORACT R/W 0 Read as 1 if debug monitor exception is active

7 SVCALLACT R/W 0 Read as 1 if SVCall exception is active

3 USGFAULTACT R/W 0 Read as 1 if usage fault exception is active

1 BUSFAULTACT R/W 0 Read as 1 if bus fault exception is active

0 MEMFAULTACT R/W 0 Read as 1 if memory management fault is 
    active

Note: Bit 12 (USGFAULTPENDED) is not available on revision 0 of Cortex-M3.
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Be cautious when writing to this register; make sure that the active status bits of system 
exceptions are not changed accidentally. Otherwise, if an activated system exception has its 
active state cleared by accident, a fault exception will be generated when the system exception 
handler generates an exception exit.

Pending for NMI, the SYSTICK timer, and PendSV is programmable via the Interrupt 
Control and State register. In this register, quite a number of the bit fi elds are for debugging 
purposes. In most cases only the pending bits would be useful for application development 
(see Table 8.6).

Table 8.6 Interrupt Control and State Register (0xE000ED04)

Bits Name Type Reset Value Description
31 NMIPENDSET R/W 0 NMI pended

28 PENDSVSET R/W 0 Write 1 to pend system call
    Read value indicates pending status

27 PENDSVCLR W 0 Write 1 to clear PendSV pending status

26 PENDSTSET R/W 0 Write 1 to pend SYSTICK exception
    Read value indicates pending status

25 PENDSTCLR W 0 Write 1 to clear SYSTICK pending status

23 ISRPREEMPT R 0 Indicates that a pending interrupt is 
    going to be active in the next step (for 
    debug)

22 ISRPENDING R 0 External interrupt pending (excluding 
    system exceptions such as NMI for fault)

21:12 VECTPENDING R 0 Pending ISR number

11 RETTOBASE R 0 Set to 1 when the processor is running an 
    exception handler; will return to Thread 
    level if interrupt return and no other 
    exceptions pending

9:0 VECTACTIVE R 0 Current running interrupt service routine

Example Procedures in Setting Up an Interrupt

Here is a simple example procedure for setting up an interrupt:

1. When the system boots up, the priority group register might need to be set up. By default 
the priority group 0 is used (bit[7:1] of priority level is the preemption level and bit[0] is 
the subpriority level).

2. Copy the hard fault and NMI handlers to a new vector table location if vector table 
relocation is required. (In simple applications, this might not be needed.)
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3. The Vector Table Offset register should also be set up to get the vector table ready (optional).

4. Set up the interrupt vector for the interrupt. Since the vector table could have been 
relocated, you might need to read the Vector Table Offset register, then calculate the 
correct memory location for your interrupt handler. This step might not be needed if the 
vector is hardcoded in ROM.

5. Set up the priority level for the interrupt.

6. Enable the interrupt.

The program in assembly might be something like this:

  LDR   R0, =0xE000ED0C     ; Application Interrupt and Reset 
; Control Register

 LDR   R1, =0x05FA0500    ; Priority Group 5 (2/6)
 STR   R1, [R0]           ; Set Priority Group
 ...

 MOV   R4,#8              ; Vector Table in ROM
 LDR   R5,=(NEW_VECT_TABLE+8)
  LDMIA R4!,{R0-R1}         ; Read vectors address for NMI and

; Hard Fault
 STMIA R5!,{R0-R1}        ; Copy vectors to new vector table
 ...

 LDR   R0,=0xE000ED08     ; Vector Table Offset Register
 LDR   R1,=NEW_VECT_TABLE
 STR   R1,[R0]            ; Set vector table to new location
 ...

 LDR   R0,=IRQ7_Handler   ; Get starting address of IRQ#7 handler
 LDR   R1,=0xE000ED08     ; Vector Table Offset Register
 LDR   R1,[R1]
  ADD   R1, R1, #(4*(7+16)); Calculate IRQ#7 handler vector 

                         ; address
 STR   R0,[R1]            ; Setup vector for IRQ#7
 ...

 LDR   R0,=0xE000E400     ; External IRQ priority base
 MOV   R1, #0xC0
 STRB  R1,[R0,#7]         ; Set IRQ#7 priority to 0xC0
 ...

 LDR   R0,=0xE000E100     ; SETEN register
  MOV   R1,#(1<<7)          ; IRQ#7 enable bit (value 0x1 shifted

; by 7 bits)
 STR   R1,[R0]            ; Enable the interrupt

In addition, make sure that you have enough stack memory if you allow a large number of 
nested interrupt levels. Since exception handlers always use the MSP, the main stack memory 
should contain enough space for the largest number of nesting interrupts.

CH08-H8534.indd   145CH08-H8534.indd   145 7/19/07   1:32:49 PM7/19/07   1:32:49 PM



Chapter 8

146

If the application is stored in ROM and there is no need to change the exception handlers, 
we can have the whole vector table coded in the beginning of ROM in the Code region 
(0x00000000). This way, the vector table offset will always be 0 and the interrupt vector is 
already in ROM. The only steps required to set up an interrupt will be:

1. Set up the priority group, if needed.

2. Set up the priority of the interrupt.

3. Enable the interrupt.

In cases where the software needs to be able to run on a number of hardware devices, it might 
be necessary to determine:

• The number of interrupts supported in the design

• The number of bits in priority-level registers

The Cortex-M3 has an Interrupt Controller Type register that gives the number of interrupt 
inputs supported, in granularities of 32 (see Table 8.7). Alternatively, you can detect the 
exact number of external interrupts by performing a read/write test to interrupt confi guration 
registers such as SETEN or priority registers.

Table 8.7 Interrupt Controller Type Register (0xE000E004)

Bits Name Type Reset Value Description
4:0 INTLINESNUM R – Number of interrupt inputs in step of 32
    0 = 1 to 32
    1 = 33 to 64
    …

To determine the number of bits implemented for interrupt priority-level registers, you can 
write 0xFF to one of the priority-level registers, then read it back and see how many bits are 
set. The minimum number is three. In that case you should get a read-back value of 0xE0.

Software Interrupts

Software interrupts can be generated in more than one way. The fi rst one is to use the 
SETPEND register; the second solution is to use the Software Trigger Interrupt Register 
(STIR), outlined in Table 8.8.

Table 8.8 Software Trigger Interrupt Register (0xE000EF00)

Bits Name Type Reset Value Description
8:0 INTID W – Writing the interrupt number sets the pending 
    bit of the interrupt; for example, write 0 to 
    pend external interrupt #0
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System exceptions (NMI, faults, PendSV, and so on) cannot be pended using this register. 
By default, a user program cannot write to the NVIC; however, if it is necessary for a user 
program to write to this register, the bit 1 (USERSETMPEND) of the NVIC Confi guration 
Control Register (0xE000ED14) can be set to allow user access to the NVIC’s STIR.

The SYSTICK Timer

The SYSTICK Timer is integrated with the NVIC and can be used to generate a SYSTICK 
exception (exception type #15). In many operating systems, a hardware timer is used to 
generate interrupts so that the OS can carry out task management—for example, to allow 
multiple tasks to run at different time slots and to make sure that no single task can lock 
up the whole system. To do that, the timer needs to be able to generate interrupts, and if 
possible, it should be protected from user tasks so that user applications cannot change the 
timer behavior.

The Cortex-M3 processor includes a simple timer. Since all Cortex-M3 chips have the same 
timer, porting software between different Cortex-M3 products is simplifi ed. The timer is a 
24-bit down counter. It can use the internal clock (FCLK, the free running clock signal on 
the Cortex-M3 processor) or external clock (the STCLK signal on the Cortex-M3 processor). 
However, the source of the STCLK will be decided by chip designers, so the clock frequency 
might vary between products. You should check the chip’s datasheet carefully when selecting 
a clock source.

The SYSTICK Timer can be used to generated interrupts. It has a dedicated exception type 
and exception vector. It makes porting operating systems and software easier because the 
process will be the same across different Cortex-M3 products.

The SYSTICK Timer is controlled by four registers, shown in Tables 8.9–8.12.

Table 8.9 SYSTICK Control and Status Register (0xE000E010)

Bits Name Type Reset Value Description
16 COUNTFLAG R 0 Read as 1 if counter reaches 0 since last time 
    this register is read; clear to 0 automatically 
    when read or when current counter value is 
    cleared

2 CLKSOURCE R/W 0 0 = External reference clock (STCLK)
    1 = Use core clock

1 TICKINT R/W 0 1 = Enable SYSTICK interrupt generation 
    when SYSTICK timer reaches 0
    0 = Do not generate interrupt

0 ENABLE R/W 0 SYSTICK timer enable
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The Calibration Value register provides a solution for applications to generate the same 
SYSTICK interrupt interval when running on various Cortex-M3 products. To use it, just write 
the value in TENMS to the reload value register. This will give an interrupt interval of about 
10 ms. For other interrupt timing intervals, the software code will need to calculate a new 
suitable value from the calibration value. However, the TENMS fi eld might not be available in 
all Cortex-M3 products (the calibration input signals to the Cortex-M3 might have been tied 
low), so check with your manufacturer’s datasheets before using this feature.

Aside from being a system tick timer for operating systems, the SYSTICK Timer can be used 
in a number of ways: as an alarm timer, for timing measurement, and more. Note that the 
SYSTICK Timer stops counting when the processor is halted during debugging.

Table 8.10 SYSTICK Reload Value Register (0xE000E014)

Bits Name Type Reset Value Description
23:0 RELOAD R/W 0 Reload value when timer reaches 0

Table 8.11 SYSTICK Current Value Register (0xE000E018)

Bits Name Type Reset Value Description

23:0 CURRENT R/Wc 0 Read to return current value of the timer.
    Write to clear counter to 0. Clearing of 
    current value also clears COUNTFLAG in 
    SYSTICK Control and Status Register

Table 8.12 SYSTICK Calibration Value Register (0xE000E01C)

Bits Name Type Reset Value Description
31 NOREF R – 1 = No external reference clock (STCLK not available)
    0 = External reference clock available

30 SKEW R – 1 = Calibration value is not exactly 10 ms
    0 = Calibration value is accurate

23:0 TENMS R/W 0 Calibration value for 10 ms.; chip designer should 
    provide this value via Cortex-M3 input signals. If this 
    value is read as 0, calibration value is not available
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Interrupt Behavior
CHAPTER 9

In This Chapter:

● Interrupt/Exception Sequences
● Exception Exits
● Nested Interrupts
● Tail-Chaining Interrupts
● Late Arrivals
● More on the Exception Return Value
● Interrupt Latency
● Faults Related to Interrupts

Interrupt/Exception Sequences

When an exception takes place, a number of things happen:

• Stacking (pushing eight registers’ contents to stack)

• Vector fetch (reading the exception handler starting address from the vector table)

• Update of the stack pointer, link register, and program counter

Stacking

When an exception takes place, the registers PC, PSR, R0–R3, R12, and LR are pushed to the 
stack. If the code that is running uses the PSP, the process stack will be used; if the code that 
is running uses the MSP, the main stack will be used. Afterward, the main stack will always be 
used during the handler, so all nested interrupts will use the main stack.

The order of stacking is shown in Figure 9.1 (assuming that the SP value is N before the 
exception). Due to the pipeline nature of the AHB interface, the address and data are offset by 
one pipeline state.
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The values of PC and PSR are stacked fi rst so that instruction fetch can be started early (which 
requires modifi cation of PC) and the IPSR can be updated early. After stacking, SP will be 
updated to N-32 (0 � 20), and the stacked data arrangement in the stack memory will look 
like Table 9.1.

N-8
Address
(HADDR)

PC

N-4

PSR

N-32

R0

N-28

R1

N-24

R2

N-20

R3

N-16

R12

N-12

LR
Data

(HWDATA)

Time

Figure 9.1 Stacking Sequence

Address Data Push Order
Old SP (N) -� (Previously pushed data) –

(N-4) PSR 2

(N-8) PC 1

(N-12) LR 8

(N-16) R12 7

(N-20) R3 6

(N-24) R2 5

(N-28) R1 4

New SP (N-32) -� R0 3

Table 9.1 Stack Memory Content After Stacking and Stacking Order

The reason the registers R0–R3, R12, LR, PC, and PSR are stacked is that these are caller saved 
registers, according to C standards (C/C�� standard Procedure Call Standard for the ARM 
Architecture, AAPCS, Ref 5). This arrangement allows the interrupt handler to be a normal C 
function, because registers that could be changed by the exception handler are saved in the stack.

The general registers (R0–R3, R12) are located at the end of the stack frame so that they can 
be easily accessed using SP-related addressing. As a result, it’s easy to pass parameters to 
software interrupts using stacked registers.

Vector Fetches

While the data bus is busy stacking the registers, the instruction bus carries out another 
important task of the interrupt sequence: It fetches the exception vector (the starting address of 
the exception handler) from the vector table. Since the stacking and vector fetch are performed 
on separate bus interfaces, they can be carried out at the same time.
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Register Updates

After the stacking and vector fetch are completed, the exception vector will start to execute. 
On entry of the exception handler, a number of registers will be updated:

• SP: The Stack Pointer (either the MSP or the PSP) will be updated to the new location 
during stacking. During execution of the interrupt service routine, the MSP will be 
used if the stack is accessed.

• PSR: The IPSR (the lowest part of the PSR) will be updated to the new exception 
number.

• PC: This will change to the vector handler as the vector fetch completes and starts 
fetching instructions from the exception vector.

• LR: The LR will be updated to a special value called EXC_RETURN.1 This special 
value drives the interrupt return operation. The last 4 bits of the LR have a special 
meaning, which is covered later in this chapter.

A number of other NVIC registers will also be updated. For example, the pending status of the 
exception will be cleared and the active bit of the exception will be set.

Exception Exits

At the end of the exception handler, an exception exit (known as an interrupt return in some 
processors) is required to restore the system status so that the interrupted program can resume 
normal execution. There are three ways to trigger the interrupt return sequence; all of them use 
the special value stored in the LR in the beginning of the handler (see Table 9.2).

1 EXC_RETURN has values with bit[31:4] and are all 1 (i.e., 0xFFFFFFFX); the last 4 bits defi ne the return 
information. More information on the EXC_RETURN value is covered later in this chapter.

Return Instruction Description
BX �reg� If the EXC_RETURN value is still in LR, we can use the BX LR instruction to 
 perform the interrupt return.

POP {PC}, or Very often the value of LR is pushed to the stack after entering the exception
POP {...., PC} handler. We can use the POP instruction, either a single POP or multiple POPs, to 
 put the EXC_RETURN value to the program counter. This will cause the processor 
 to perform the interrupt return.

LDR, or LDM It is possible to produce an interrupt return using the LDR instruction with PC as 
 the destination register.

Table 9.2 Instructions that Can be Used for Triggering Exception Return
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Some microprocessor architectures use special instructions for interrupt returns (for example, 
reti in 8051). In the Cortex-M3, a normal return instruction is used so that the whole interrupt 
handler can be implemented as a C subroutine.

When the interrupt return instruction is executed, the following processes are carried out:

1. Unstacking: The registers pushed to the stack will be restored. The order of the POP will 
be the same as in stacking. The stack pointer will also be changed back.

2. NVIC register update: The active bit of the exception will be cleared. For external 
interrupts, if the interrupt input is still asserted, the pending bit will be set again, causing it 
to reenter the interrupt handler.

Nested Interrupts

Nested interrupt support is built into the Cortex-M3 processor core and the NVIC. There is no 
need to use assembler wrapper code to enable nested interrupts. In fact, you do not have to do 
anything apart from setting up the appropriate priority level for each interrupt source. First, 
the NVIC in the Cortex-M3 processor sorts out the priority decoding for you. So, when the 
processor is handling an exception, all other exceptions with the same or lower priority will be 
blocked. Second, the automatic hardware stacking and unstacking allow the nested interrupt 
handler to execute without risk of losing data in registers.

However, one thing needs to be taken care of: Make sure that there is enough space in the 
main stack if lots of nested interrupts are allowed. Since each exception level will use eight 
words of stack space and the exception handler code might require extra stack space, it might 
end up using more stack memory than expected.

Reentrant exceptions are not allowed in the Cortex-M3. Since each exception has a priority 
level assigned and, during exception handling, exceptions with the same or lower priority 
will be blocked, the same exception cannot be carried out until the handler is ended. For this 
reason, SVC instructions cannot be used inside an SVC handler, since doing so will cause a 
fault exception.

Tail-Chaining Interrupts

The Cortex-M3 uses a number of methods to improve interrupt latency. The fi rst one we’ll 
look at is tail chaining.

When an exception takes place but the processor is handling another exception of the same or 
higher priority, the exception will be pended. When the processor has fi nished executing the 
current exception handler, instead of POP, the registers go back into the stack and PUSH it 
back in again, skipping the unstacking and the stacking. In this way the timing gap between 
the two exception handlers is greatly reduced.
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Late Arrivals

Another feature that improves interrupt performance is late arrival exception handling. When 
an exception takes place and the processor has started the stacking process, and if during this 
delay a new exception arrives with higher preemption priority, the late arrival exception will 
be processed fi rst.

For example, if Exception #1 (lower priority) takes place a few cycles before Exception #2 
(higher priority), the processor will behave as shown in Figure 9.3, such that Handler #2 is 
executed as soon as the stacking completes.

Interrupt #1

Interrupt #2

Main Program

Processor
State

Interrupt Service
Routine #1

Interrupt Service
Routine #2

Main Program

Interrupt
Event #1

Interrupt exits Interrupt exits

Stacking Unstacking

Thread Mode Handler Mode Handler Mode Thread Mode

Figure 9.2 Tail Chaining of Exceptions

Interrupt #1
(Low Priority)

Interrupt #2
(High Priority)

Processor
State Thread Handler #2Exception Sequence

Data Bus

Instruction
Bus Thread

Vector Fetch

Handler Instruction Fetch

Stacking

Figure 9.3 Late Arrival Exception Behavior

More on the Exception Return Value

When entering an exception handler, the LR is updated to a special value called EXC_RETURN, 
with the upper 28 bits all set to 1. This value, when loaded into the PC at the end of the 
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exception handler execution, will cause the processor to perform an exception return 
sequence.

The instructions that can be used to generate exception returns are:

• POP/LDM

• LDR with PC as a destination

• BX with any register

The EXC_RETURN value has bit [31:4] all set to 1, and bit[3:0] provides information required 
by the exception return operation (see Table 9.3). When the exception handler is entered, the 
LR value is updated automatically, so there is no need to generate these values manually.

Table 9.3 Description of Bit Fields in EXC_RETURN Value

Bits 31:4 3 2 1 0
Descriptions 0xFFFFFFF Return mode  Return stack Reserved; Process state
  (Thread/handler)  must be  (Thumb/ARM)
    0

Bit 0 indicates the process state being used after the exception return. Since the Cortex-M3 
supports only the Thumb state, bit 0 must be 1.

The valid values (for the Cortex-M3) are shown in Table 9.4.

Table 9.4 Allowed EXC_RETURN Values on Cortex-M3

Value Condition
0xFFFFFFF1 Return to handler mode

0xFFFFFFF9 Return to Thread mode and on return use the main stack

0xFFFFFFFD Return to Thread mode and on return use the process stack

If the thread is using the MSP (main stack), the value of LR will be set to 0xFFFFFFF9 when it 
enters an exception, and 0xFFFFFFF1 when a nested exception is entered, as shown in Figure 9.4. 
If the thread is using PSP (process stack), the value of LR would be 0xFFFFFFFD when entering 
the fi rst exception and 0xFFFFFFF1 for entering a nested exception, as shown in Figure 9.5.

As a result of the EXC_RETURN number format, you cannot perform interrupt returns to an 
address in the 0xFFFFFFF0–0xFFFFFFFF memory range. However, since this address is in a 
nonexecutable region anyway, it is not a problem.

Interrupt Latency

The term interrupt latency refers to the delay from the start of the interrupt request to the start 
of interrupt handler execution. In the Cortex-M3 processor, if the memory system has zero 
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Interrupt #1
(Low Priority)

Interrupt #2
(High Priority)

Main Program

Interrupt exits

Interrupt
exits

Unstacking

Interrupt Service
Routine #2

Interrupt Service
Routine #1

Stacking

Execution
Status

Interrupt
Event #1

Thread Mode
Handler
Mode

Handler
Mode

Thread Mode

LR � 0xFFFFFFF9 LR � 0xFFFFFFF1

Main StackMain Stack Main Stack

Handler
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Figure 9.4 LR Set to EXC_RETURN at Exception (Main Stack Used in 
Thread Mode)

Interrupt #1
(Low Priority)

Interrupt #2
(High Priority)

Main Program

Interrupt exits

Interrupt
exits

Unstacking

Interrupt Service
Routine #2

Interrupt Service
Routine #1
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Interrupt
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Thread Mode
Handler
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LR � 0xFFFFFFFD LR � 0xFFFFFFF1

Main StackProcess Stack Process Stack

Handler
Mode

Figure 9.5 LR Set to EXC_RETURN at Exception (Process Stack Used in 
Thread Mode)
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latency, and provided that the bus system design allows vector fetch and stacking to happen 
at the same time, the interrupt latency can be as low as 12 cycles. This includes stacking 
the registers, vector fetch, and fetching instructions for the interrupt handler. However, this 
depends on memory access wait states and a few other factors.

For tail-chaining interrupts, since there is no need to carry out stacking operations, the latency 
of switching from one exception handler to another exception handler can be as low as six 
cycles.

When the processor is executing a multicycle instruction such as divide, the instruction could 
be abandoned and restarted after the interrupt handler completes. This also applies to load 
double (LDRD) and store double (STRD) instructions.

To reduce exception latency, the Cortex-M3 processor allows exceptions in the middle of 
multiple load and store instructions (LDM/STM). If the LDM/STM instruction is executing, 
the current memory accesses will be completed, and the next register number will be saved 
in the stacked xPSR (ICI bits). After the exception handler completes, the multiple load/
store will resume from the point at which the transfer stopped. There is a corner case: If the 
multiple load/store instruction being interrupted is part of an IF-THEN (IT) instruction block, 
the load/store instruction will be cancelled and restarted when the interrupt is completed. This 
is because the ICI bits and IT execution status bits share the same space in the EPSR.

In addition, if there is an outstanding transfer on the bus interface, such as a buffered write, the 
processor will wait until the transfer is completed. This is necessary to ensure that a bus fault 
handler preempts the correct process.

Of course, the interrupt could be blocked if the processor is already executing another 
exception handler of the same or higher priority or if the interrupt mask register was masking 
the interrupt request. In these cases, the interrupt will be pended and will not be processed 
until the blocking is removed.

Faults Related to Interrupts

Various faults can be caused by exception handling. Let’s take a look at these now.

Stacking

If a bus fault takes place during stacking, the stacking sequence will be terminated and the bus 
fault exception will be triggered or pended. If the bus fault is disabled, the hard fault hander will 
be executed. Otherwise, if the bus fault handler has higher priority than the original exception, 
the bus fault handler will be executed; if not, it will be pended until the original exception is 
completed. This scenario, called a stacking error, is indicated by the STKERR (bit 4) in the Bus 
Fault Status register (0xE000ED29).
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If the stacking error is caused by an MPU violation, the memory management fault handler 
will be executed and the MSTKERR (bit 4) in the Memory Management Fault Status register 
(0xE000ED28) will be set to indicate the problem. If the memory management fault is 
disabled, the hard fault handler will be executed.

Unstacking

If a bus fault takes place during unstacking (an interrupt return), the unstacking sequence 
will be terminated and the bus fault exception will be triggered or pended. If the bus fault is 
disabled, the hard fault handler will be executed. Otherwise, if the bus fault handler has higher 
priority than the current priority of the executing task (the core could already be executing 
another exception in a nested interrupt case), the bus fault handler will be executed. This 
scenario, called an unstacking error, is indicated by the UNSTKERR (bit 3) in the Bus Fault 
Status register (0xE000ED29).

Similarly, if the stacking error is caused by an MPU violation, the memory management fault 
handler will be executed and the MUNSTKERR (bit 3) in the Memory Management Fault 
Status register (0xE000ED28) will be set to indicate the problem. If the memory management 
fault is disabled, the hard fault handler will be executed.

Vector Fetches

If a bus fault or memory management fault takes place during a vector fetch, the hard fault 
handler will be executed. This is indicated by VECTTBL (bit 1) in the Hard Fault Status 
register (0xE000ED2C).

Invalid Returns

If the EXC_RETURN number is invalid or does not match the state of the processor (as in 
using 0xFFFFFFF1 to return to Thread mode), it will trigger the usage fault. If the usage 
fault handler is not enabled, the hard fault handler will be executed instead. The INVPC bit 
(bit 2) or INVSTATE (bit 1) bit in the Usage Fault Status register (0xE000ED2A) will be set, 
depending on the actual cause of the fault.
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Cortex-M3 Programming
CHAPTER 10

In This Chapter:

● Overview
● The Interface Between Assembly and C
● A Typical Development Flow
● The First Step
● Producing Outputs
● Using Data Memory
● Using Exclusive Access for Semaphores
● Using Bit Band for Semaphores
● Working with Bit Field Extract and Table Branch

Overview

The Cortex-M3 can be programmed using either assembler or C. There might be compilers 
for other languages, but most people will use assembler, C, or a combination of the two in 
their projects. Because a lot of information on the way to do programming depends on the 
tool chain and silicon chips you use, this book will not focus on the details of compiling a 
program or how to download the program to your circuit board. A little bit of this information 
is covered in Chapters 19 and 20.

Using Assembly

For small projects, it is possible to develop the whole application in assembly language. Using 
assembler, you might be able to get the best optimization you want. However, it might increase 
your development time, and it could be easy to make mistakes. In addition, handling complex 
data structures or function library management can be extremely diffi cult in assembler. Yet 

CH10-H8534.indd   159CH10-H8534.indd   159 7/19/07   1:33:52 PM7/19/07   1:33:52 PM



Chapter 10

160

even when the C language is used in a project, in many situations part of the program is 
implemented in assembly language:

• Functions that cannot be implemented in C, such as special register accesses and 
exclusive accesses

• Timing-critical routines

• Tight memory requirements, causing part of the program to be written in assembly to 
get the smallest memory size

Using C

C has the advantage of being portable and easier for implementing complex operations, 
compared to assembly language. Since it’s a generic computer language, C does not specify 
how the processor is initialized. For these areas, tool chains can have different approaches. 
The best way to get started is to look at example codes. For users of ARM C compiler 
products such as RealView Development Suite (RVDS) or KEIL RealView Microcontroller 
Development Kit, a number of Cortex-M3 program examples are already included in the 
installation. For users of the GNU tool chain, Chapter 19 of this book provides a simple C 
example based on the CodeSourcery GNU tool chain for ARM.

Use of the C language can often speed up application development, but in many cases low-
level system control will still require assembly code. Most ARM C compilers allow you 
to include assembly code, called inline assembler. This code is often necessary for many 
projects.

In the ARM compiler, you can add assembly code inside the C program. Traditionally, inline 
assembler is used, but the inline assembler in RealView C Compiler does not support Thumb-
2 instructions. Starting with RealView C Compiler version 3.0, a new feature called the 
Embedded Assembler is included, and it supports Thumb-2 instructions. For example, you can 
insert assembly functions in your C programs this way:

__asm void SetFaultMask(unsigned int new_value)
{
  // Assembly code here
  MSR FAULTMASK, new_value // Write new value to FAULTMASK
  BX LR // Return to calling program
}

Detailed descriptions of Embedded Assembler in RealView C Compiler can be found in the 
RVCT 3.0 Compiler and Library Guide (Ref 6).

For the Cortex-M3, Embedded Assembler is useful for tasks such as accessing special 
registers (MRS and MSR instructions; for example, setting up stack memory) or when it is 
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necessary to use instructions that cannot be generated using C (for example, sleep [WFI and 
WFE], exclusive accesses, and memory barrier operations).

Previously in ARM processors, because there is a Thumb state and an ARM state, the code for 
different states has to be compiled differently. In the Cortex-M3 there is no such need; because 
everything is in the Thumb state, project fi le management is much simpler.

When you’re developing applications in C, it is recommended that you use the double word 
stack alignment function (confi gured by the STKALIGN bit in the NVIC Confi guration 
Control register). This can be set in the startup code. For example:

#defi ne NVIC_CCR ((volatile unsigned long *)(0xE000ED14))
*NVIC_CCR � *NVIC_CCR | 0x200; /* Set STKALIGN */

Using this feature ensures that the system conforms to Procedure Call Standards for the ARM 
Architecture (AAPCS). Additional information on this subject is covered in Chapter 12.

The Interface Between Assembly and C

In various situations, assembly code and the C program interact. For example:

• When embedded assembly (or inline assembler, in the case of the GNU tool chain) is 
used in C program code

• When C program code calls a function or subroutine implemented in assembler in a 
separate fi le

• When an assembly program calls a C function or subroutine

In these cases, it is important to understand how parameters and return results are passed 
between the calling program and the function being called. The mechanisms of these 
interactions are specifi ed in the ARM Architecture Procedure Call Standard (AAPCS, Ref 5).

For simple cases, when a calling program needs to pass parameters to a subroutine or function, 
it will use registers R0 to R3, where R0 is the fi rst parameter, R1 is the second, and so on. 
Similarly, R0 is used for returning a value at the end of a function. R0–R3 and R12 can be 
changed by a function or subroutine, whereas the contents of R4–R11 should be restored to 
the previous state before entering the function, usually handled by stack PUSH and stack POP.

To make them easier to understand, the examples in this book do not strictly follow AAPCS 
practices. If a C function is called by an assembly code, the effect of a possible register change 
to R0–R3 and R12 will need to be taken into account. If the contents of these registers are 
needed at a later stage, these registers might need to be saved on the stack and restored after 
the C function completes. Since the example codes mostly only call assembly functions 
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or subroutines that affect a few registers or restore the register contents at the end, it’s not 
necessary to save registers R0–R3 and R12.

A Typical Development Flow

Various software programs are available for developing Cortex-M3 applications. The concepts 
of code generation fl ow in terms of these tools are similar. For the most basic uses, you will 
need assembler, a C compiler, a linker, and binary fi le generation utilities. For ARM solutions, 
the RealView Development Suite (RVDS) or RealView Compiler Tools (RVCT) provide a 
fi le generation fl ow, as shown in Figure 10.1. The scatter-loading script is optional but often 
required when the memory map becomes more complex.

C Files (.c)

armcc
(Compiler)

Object Files (.o)

Assembly Files (.s)

armasm
(Compiler)

Object Files (.o)

Scatter-Loading Script

Executable
Image File
(.axf / .elf)

armlink
(linker)

fromelf

fromelf

Binary
Program

Image (.bin)

Disassembled
Code (.txt)

Memory
Layout

Figure 10.1 Example Flow Using ARM Development Tools

Aside from these basic tools, RVDS also contains a large number of utilities, including an 
Integrated Development Environment (IDE) and debuggers. Please visit the ARM Web site 
(www.arm.com) for details.

The First Step

This chapter reviews a few examples in assembly language. In most cases you will be 
programming in C, but by looking into some assembler examples, we can gain a better 
understanding of how to use the Cortex-M3 processor. The examples here are based on ARM 
assembler tools (armasm). For other assembler tools, the fi le format and instruction
syntax might need to be modifi ed. In addition, some development tools will actually do the 
startup code for you, so you might not need to worry about creating your assembly
startup code.
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The fi rst simple program can be something like this:

STACK_TOP   EQU   0x20002000         ; constant for SP starting value

            AREA  |Header Code|, CODE
            DCD    STACK_TOP  ; Stack top
            DCD    Start      ; Reset vector
            ENTRY             ; Indicate program execution start here
Start       ; Start of main program
            ; initialize registers
            MOV   r0,  #10    ; Starting loop counter value
            MOV   r1,  #0     ; starting result
            ; Calculated 10+9+8+...+1
loop
            ADD   r1,  r0     ; R1�R1 + R0
            SUBS  r0,  #1     ; Decrement R0, update fl ag (“S” suffi x)
            BNE   loop        ; If result not zero jump to loop
            ; Result is now in R1
deadloop
            B     deadloop    ; Infi nite loop
            END               ; End of fi le

This simple program contains the initial SP value, the initial PC value, and setup registers and 
then does the required calculation in a loop.

Assuming you are using ARM tools, this program can be assembled using:

$> armasm --cpu cortex-m3 -o test1.o test1.s

The -o option specifi es the output fi lename. The test1.o is an object fi le. We then need to use a 
linker to create an executable image (ELF). This can be done by:

$> armlink --rw_base 0x20000000 --ro_base 0x0 --map -o test1.elf 
  test1.o

Here, —ro-base 0x0 specifi es that the read-only region (program ROM) starts at address 0x0; 
—rw-base specifi es that the read/write region (data memory) starts at address 0x20000000. 
(In this example test1.s, we did not have any RAM data defi ned.) The --map option creates an 
image map, which is useful for understanding the memory layout of the compiled image.

Finally, we need to create the binary image:

$> fromelf --bin --output test1.bin test1.elf

For checking that the image looks like what we wanted, we can also generate a disassembled 
code list fi le by:

$> fromelf -c --output test1.list test1.elf
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If everything works fi ne, you can then load your ELF image or binary image into your 
hardware or instruction set simulator for testing.

Producing Outputs

It is always more fun when you can connect your microcontroller to the outside world. The 
simplest way to do that is to turn on/off the LEDs. However, this practice is quite limiting 
because it can only represent very limited information. One of the most common output 
methods is to send text messages to a console. In embedded product development, this task 
is often handled by a UART interface connecting to a personal computer. For example, a 
computer running a Windows1 system with the Hyper-Terminal program acting as a console 
can be a handy way to produce outputs.

1 Windows and Hyper-Terminal are trademarks of Microsoft Corporation.

Cortex-M3
Microcontroller

Level
Shifter

Hyper-Terminal
Running on
Windows

RS-232
Serial Cable

Figure 10.2 A Low-Cost Test Environment for Outputting Text Messages

The Cortex-M3 processor does not contain a UART interface, but most Cortex-M3 
microcontrollers come with UART provided by the chip manufacturers. The specifi cation of 
the UART can differ among various devices, so we won’t attempt to cover the topic in this 
book. Our next example assumes that a UART is available and has a status fl ag to indicate 
whether the transmit buffer is ready for sending out new data. A level shifter is needed in the 
connection because RS-232 has a different voltage level than the microcontroller I/O pins.

UART is not the only solution to output text messages. A number of features are implemented 
on the Cortex-M3 processor to help output debugging messages:

• Semihosting: Depending on the debugger and code library support, semihosting 
(outputting printf messages via a debug probe device) can be done via debug register 
in the NVIC. (More information on this topic is covered in Chapter 15.) In these cases, 
you can use printf within your C program and the output will be displayed on the 
console/standard output (STDOUT) of the debugger software.
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• Instrumentation trace: If the Cortex-M3 microcontroller provides a trace port and an 
external Trace Port Analyzer (TPA) is available, instead of using UART to output 
messages, we can use the Instrumentation Trace Module (ITM). The trace port works 
much faster than UART and can offer more data channels.

• Instrumentation trace via Serial Wire Viewer: Alternatively, the Cortex-M3 processor 
(revision 1 and later) also provides a Serial Wire Viewer (SWV) operation mode on 
the Trace Port Interface Unit (TPIU). This interface allows outputs from ITM to be 
captured using low-cost hardware instead of a TPA. However, the bandwidth provided 
with the SWV mode is limited, so it is not ideal for large amounts of data.

The “Hello World” Example

Before we try to write a “Hello world” program, we should fi gure out how to send one 
character through the UART. The code used to send a character can be implemented as a 
subroutine, which can be called by other message output codes. If the output device changes, 
we only need to change this subroutine and all the text messages can be output by a different 
device. This modifi cation is usually called retargeting.

A simple routine to output a character could be something like this:

UART0_BASE     EQU     0x4000C000
UART0_FLAG     EQU     UART0_BASE+0x018
UART0_DATA     EQU     UART0_BASE+0x000

Putc           ; Subroutine to send a character via UART
               ; Input R0 = character to send
               PUSH  {R1,R2, LR}    ; Save registers
               LDR   R1,=UART0_FLAG
PutcWaitLoop
               LDR   R2,[R1]        ; Get status fl ag
               TST   R2, #0x20       ; Check transmit buffer full fl ag 

; bit
               BNE   PutcWaitLoop   ; If busy then loop
               LDR   R1,=UART0_DATA ; otherwise
               STRB  R0, [R1]       ; Output data to transmit buffer
               POP   {R1,R2, PC}    ; Return

The register addresses and bit defi nitions here are just examples; you might need to change
the value for your device. In addition, some UART might require a more complex status-
checking process before the character is output to the transmit buffer. Furthermore,
another subroutine call (Uart0Initialize in the following example) is required to initialize
the UART, but this depends on the UART specifi cation and will not be covered here. (An 
example of UART initialization in C for Luminary Micro LM3S811 devices is covered in 
Chapter 20.)
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Now we can use this subroutine to build a number of functions to display messages:

Puts        ; Subroutine to send string to UART
            ; Input R0 = starting address of string.
            ; The string should be null terminated
            PUSH {R0 ,R1, LR} ; Save registers
            MOV R1, R0         ; Copy address to R1, because R0 will 

; be used
PutsLoop                     ; as input for Putc
            LDRB  R0,[R1],#1   ; Read one character and increment 

; address
            CBZ   R0, PutsLoopExit ; if character is null, goto end
            BL    Putc         ; Output character to UART
            B     PutsLoop     ; Next character
PutsLoopExit
            POP   {R0, R1, PC} ; Return

With this subroutine, we are ready for our fi rst “Hello world” program:

STACK_TOP   EQU   0x20002000       ; constant for SP starting value
UART0_BASE  EQU   0x4000C000
UART0_FLAG  EQU   UART0_BASE+0x018
UART0_DATA  EQU   UART0_BASE+0x000
            AREA  | Header Code|, CODE
            DCD   STACK_TOP ; Stack Pointer initial value
            DCD   Start ; Reset vector
            ENTRY
Start       ; Start of main program
            MOV   r0, #0       ; initialize registers
            MOV   r1, #0
            MOV   r2, #0
            MOV   r3, #0
            MOV   r4, #0
            BL    Uart0Initialize ; Initialize the UART0
            LDR   r0,=HELLO_TXT ; Set R0 to starting address of string
            BL    Puts
deadend
            B     deadend            ; Infi nite loop
            ;--------------------------------
            ; subroutines
            ;--------------------------------
Puts        ; Subroutine to send string to UART
            ;Input R0 = starting address of string.
            ; The string should be null terminated
            PUSH {R0 ,R1, LR} ; Save registers
            MOV R1, R0         ; Copy address to R1, because R0 will 

; be used
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PutsLoop                      ; as input for Putc
            LDRB   R0,[R1],#1  ; Read one character and increment 

; address
            CBZ  R0, PutsLoopExit ; if character is null, goto end
            BL   Putc         ; Output character to UART
            B    PutsLoop     ; Next character
PutsLoopExit
            POP  {R0, R1, PC} ; Return
            ;--------------------------------
Putc        ; Subroutine to send a character via UART
            ; Input R0 = character to send
            PUSH  {R1,R2, LR}    ; Save registers
            LDR   R1,=UART0_FLAG
PutcWaitLoop
            LDR   R2,[R1]        ; Get status fl ag
            TST   R2, #0x20      ; Check transmit buffer full fl ag bit
            BNE   PutcWaitLoop   ; If busy then loop
            LDR   R1,=UART0_DATA ; otherwise
            STR   R0, [R1]       ; Output data to transmit buffer
            POP   {R1,R2, PC}    ; Return
            ;--------------------------------
Uart0Initialize
            ; Device specifi c, not shown here
            BX    LR    ; Return
            ;--------------------------------
HELLO_TXT
            DCB   “Hello world\n”,0          ; Null terminated Hello 

; world string
            END                ; End of fi le

The only thing you need to add to this code is the details for the Uart0Initialize subroutine.

It will also be useful to have subroutines that output register values as well. To make things 
easier, they can all be based on Putc and Puts subroutines we have already done. The fi rst 
subroutine is to display hexadecimal values:

PutHex  ; Output register value in hexadecimal format
        ; Input R0 = value to be displayed
        PUSH  {R0-R3,LR}
        MOV   R3, R0   ; Save register value to R3 because R0 is used
                       ; for passing input parameter
         MOV   R0,#‘0’ ; Starting the display with “0x”
         BL    Putc
         MOV   R0,#‘x’
         BL    Putc
         MOV   R1, #8  ; Set loop counter
         MOV   R2, #28 ; Rotate offset
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PutHexLoop
           ROR    R3, R2       ; Rotate data value left by 4 bits 

; (right 28)
           AND    R0, R3,#0xF ; Extract the lowest 4 bit
           CMP    R0, #0xA    ; Convert to ASCII
           ITE    GE
           ADDGE  R0, #55      ; If larger or equal 10, then convert 

; to A-F
           ADDLT  R0, #48     ; otherwise convert to 0-9
           BL     Putc        ; Output 1 hex character
           SUBS   R1, #1      ; decrement loop counter
           BNE    PutHexLoop   ; if all 8 hexadecimal character been 

; display then
           POP    {R0-R3,PC}  ; return, otherwise process next 4-bit

This subroutine is useful for outputting register values. However, sometimes we also want 
to output register values in decimal. This sounds like a rather complex operation, but in the 
Cortex-M3 it is easy because of the hardware multiply and divide instructions. One of the 
other main problems is that during calculation, we will get output characters in reverse order, 
so we need to put the output results in a text buffer fi rst, wait until the whole text is ready to 
display, and then use the Puts function to display the whole result. In this example, a part of 
the stack memory is used as the text buffer:

PutDec     ; Subroutine to display register value in decimal
            ; Input R0 = value to be displayed.
            ; Since it is 32 bit, the maximum number of character
            ; in decimal format, including null termination is 11
            PUSH   {R0-R5, LR}    ; Save register values
            MOV    R3, SP         ; Copy current Stack Pointer to R3
            SUB    SP, SP, #12    ; Reserved 12 bytes as text buffer
            MOV    R1, #0         ; Null character
            STRB   R1,[R3, #-1]!   ; Put null character at end of text 

; buffer,pre-indexed
            MOV    R5, #10        ; Set divide value
PutDecLoop
            UDIV   R4, R0, R5  ; R4 = R0 / 10
            MUL    R1, R4, R5  ; R1 = R4 * 10
            SUB    R2, R0, R1  ; R2 = R0 - (R4 * 10) + remainder
            ADD    R2, #48     ; convert to ASCII (R2 can only be 0-9)
            STRB   R2,[R3, #-1]!  ; Put ascii character in text 

; buffer, pre-indexed
            MOVS   R0, R4       ; Set R0 = Divide result and set Z fl ag 

; if R4=0
            BNE    PutDecLoop   ; If R0(R4) is already 0, then there 

; is no more digit
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            MOV    R0, R3       ; Put R0 to starting location of text 
; buffer

            BL     Puts        ; Display the result using Puts
            ADD    SP, SP, #12 ; Restore stack location
            POP    {R0-R5, PC} ; Return

With various features in the Cortex-M3 instruction set, the processing to convert values into 
decimal format display can be implemented in a very short subroutine.

Using Data Memory

Back to our fi rst example: When we were doing the linking stage, we specifi ed the read/write 
memory region. How do we put data there? The method is to defi ne a data region in your 
assembly fi le. Using the same example from the beginning, we can store the data in the data 
memory at 0x20000000 (the SRAM region). The location of the data section is controlled by a 
command-line option when you run the linker:

STACK_TOP   EQU   0x20002000   ; constant for SP starting value
            AREA  | Header Code|, CODE
            DCD   STACK_TOP    ; SP initial value
            DCD   Start        ; Reset vector
            ENTRY
Start       ; Start of main program
            ; initialize registers
            MOV   r0, #10      ; Starting loop counter value
            MOV   r1, #0       ; starting result
            ; Calculated 10+9+8+...+1
loop
            ADD   r1, r0       ; R1 = R1 + R0
            SUBS  r0, #1       ; Decrement R0, update fl ag (“S” suffi x)
            BNE   loop         ; If result not zero jump to loop
            ; Result is now in R1
            LDR   r0,=MyData1  ; Put address of MyData1 into R0
            STR   r1,[r0]      ; Store the result in MyData1
deadloop
            B     deadloop     ; Infi nite loop

            AREA  | Header Data|, DATA
            ALIGN 4
MyData1     DCD   0            ; Destination of calculation result
MyData2     DCD   0
            END                ; End of fi le

During the linking stage, the linker will put the DATA region into read/write memory, so the 
address for MyData1 will be 0x20000000 in this case.
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Using Exclusive Access for Semaphores

Exclusive access instructions are used for semaphore operations—for example, to make 
sure that a resource is used by only one task. For instance, let’s say that a data variable 
DeviceALocked in memory can be used to indicate that Device A is being used. If a task wants 
to use Device A, it should check the status by reading the variable DeviceALocked. If it is 
zero, it can write a 1 to DeviceALocked to lock the device. After it’s fi nished using the device, 
it can then clear the DeviceALocked to zero so that other tasks can use it.

What will happen if two tasks try to access Device A at the same time? In that case, possibly 
both tasks will read the variable DeviceALocked, and both will get zero. Then both of them will 
try writing back 1 to the variable DeviceALocked to lock the device, and we’ll end up with both 
tasks believing that they have exclusive access to Device A. That is where exclusive accesses 
are used. The STREX instruction has a return status, which indicates whether the exclusive 
store has been successful. If two tasks try to lock a device at the same time, the return status 
will be 1 (exclusive failed) and the task can then know that it needs to retry the lock.

Chapter 5 provided some background on the use of exclusive accesses. The fl owchart in that 
discussion is shown in Figure 10.3.

Exclusive Read
(e.g., LDREX)

Exclusive Write
(e.g., STREX)

Read lock bit

Check lock bit
set?

Set lock bit

Yes

Yes

No

No

Failed. Lock bit already set;
indicates the requested resource
is used by another process
or processor.

Failed. The memory region
containing the lock bit could
have been accessed by another
process or processor.

Success. The lock bit is set
and the processor can access
the shared resource.

Return status
from exclusive

write � 0
(success)?

Figure 10.3 Using Exclusive Access for Semaphore Operations
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The operation can be carried out by the following assembly code. Note that the data write 
operation of STREX will not be carried out if the exclusive monitor returns a fail status, 
preventing a lock bit being set when the exclusive access fails:

LockDeviceA
            ; A simple function to try to lock Device A
            ; Output R0 : 0 = Success, 1 = failed
             ; If successful, value of 1 will be written to variable 

; DeviceALocked
            PUSH {R1, R2, LR}
TryToLockDeviceA
            LDR      R1,=DeviceALocked     ; Get the lock status
            LDREX    R2,[R1]
            CMP      R2,#0                 ; Check if it is locked
            BNE      LockDeviceAFailed
DeviceAIsNotLocked
            MOV      R0,#1                  ; Try to write 1 to 

; DeviceALocked
            STREX    R2,R0,[R1]            ; Exclusive write
            CMP      R2, #0
            BNE      LockDeviceAFailed     ; STREX Failed
LockDeviceASucceed
            MOV      R0,#0                 ; Return success status
            POP      {R1, R2, PC}          ; Return
LockDeviceAFailed
           MOV       R0,#1                 ; Return fail status
           POP       {R1, R2, PC}          ; Return

If the return status of this function is 1 (exclusive failed), the application tasks should wait 
a bit and retry later. In single-processor systems, the common cause of an exclusive access 
failing is an interrupt occurring between the exclusive load and the exclusive store. If the code 
is run in privileged mode, this situation can be prevented by setting an interrupt mask register 
such as PRIMASK for a short time to increase the chance of getting the resource locked 
successfully.

In multiprocessor systems, aside from interrupts, the exclusive store could also fail if another 
processor has accessed the same memory region. To detect memory accesses from different 
processors, the bus infrastructure requires exclusive access monitor hardware to detect 
whether there is an access from a different bus master to a memory between the two exclusive 
accesses. However, in most low-cost Cortex-M3 microcontrollers, there is only one processor, 
so this monitor hardware is not required.

With this mechanism, we can be sure that only one task can have access to certain resources. 
If the application cannot gain the lock to the resource after a number of times, it might need 
to quit with a timeout error. For example, a task that locked a resource might have crashed 
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and the lock remained set. In these situations, the OS should check which task is using the 
resource. If the task has completed or terminated without clearing the lock, the OS might need 
to unlock the resource.

If the process has started an exclusive access using LDREX and then found that the exclusive 
access is no longer needed, it can use the CLREX instruction to clear the local record in the 
exclusive access monitor. The syntax is:

     CLREX.W

For the Cortex-M3 processor, all exclusive memory transfers must carry out sequentially. 
However, if the exclusive access control code has to be reused on other ARM Cortex 
processors, the Data Memory Barrier (DMB) instruction might need to be inserted between 
exclusive transfers to ensure correct ordering of the memory accesses.

Using Bit-Band for Semaphores

It is possible to use the bit-band feature to carry semaphore operations, provided that the 
memory system supports locked transfers or only one bus master is present on the memory 

Figure 10.4 Using Bit-Band as a Semaphore Control

Read the whole word of 
the resource lock variable

Value is 
zero N Resource is already 

locked by one of the 
tasks. Retry later.

Try to lock the resource by setting 
one bit (bit[1]), using bit-band alias

Read back whole word again to 
check if resource is locked by 
another task at the same time.

N

Another bit has 
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locked by another 
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Only the bit set 
by the task 
itself is 1 
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Clear the locked bit for 
the task itself (bit[1]), 
using bit-band alias

Y

Y

Resource has been 
locked sucessfully

Each bit in the word 
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is used by a particular task. 
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Task 2
Task 1
Task 0
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bus. With bit band, it is possible to carry out the semaphore in C code, but the operation 
is different from using exclusive access. To use bit band as a resource allocation control, a 
memory location (such as word data) with a bit-band memory region is used, and each bit of 
this variable indicates that the resource is used by a certain task.

Since the bit-band alias writes are locked READ-MODIFY-WRITE transfers (the bus master 
cannot be switched to another one between the transfers), provided that all tasks only change 
the lock bit representing themselves, the lock bits of other tasks will not be lost, even if two 
tasks try to write to the same memory location at the same time. Unlike using exclusive 
accesses, it is possible for a resource to be “locked” simultaneously by two tasks for a short 
period of time until one of them detects the confl ict and releases the lock.

Using bit band for semaphores can work only if all the tasks in the system change only the 
lock bit they are assigned to using the bit-band alias. If any of the tasks change the lock 
variable using a normal write, the semaphore can fail because, if another task sets a lock bit 
just before the write to the lock variable, the previous lock bit set by the other task will be lost.

Working with Bit Field Extract and Table Branch

We examined the Unsigned Bit Field Extract (UBFX) and Table Branch (TBB/TBH) 
instructions in Chapter 4. These two instructions can work together to form a very powerful 
branching tree. This capability is very useful in data communication applications where the 
data sequence can have different meanings with different headers. For example, let’s say that 
the following decision tree based on Input A is to be coded in assembler (see Figure 10.5):

A[7:0]

A[7:6] = 00 A[7:6] = 01 A[7:6] = 10 A[7:6] = 11

Branch
to P1

Branch
to P2

Branch
to P3

Branch
to P4

A[4:3] = 00 A[4:3] = 01 A[4:3] = 1x

Branch
to P0

Branch
to P5

Branch
to P6

A[2] =1A[2] = 0

Figure 10.5 Bit Field Decoder: Example use of Bit Field Extract (UBFX) and
Table Branch (TBB) Instructions
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DecodeA
    LDR    R0,=A           ; Get the value of A from memory
    LDR    R0,[R0]
    UBFX   R1, R0, #6, #2  ; Extract bit[7:6] into R1
    TBB    [PC, R1]
BrTable1
    DCB   ((P0      -BrTable1)/2) ; Branch to P0       if A[7:6] = 00
    DCB   ((DecodeA1-BrTable1)/2) ; Branch to DecodeA1 if A[7:6] = 01
    DCB   ((P1      -BrTable1)/2) ; Branch to P1       if A[7:6] = 10
    DCB   ((DecodeA2-BrTable1)/2) ; Branch to DecodeA1 if A[7:6] = 11
DecodeA1
    UBFX   R1, R0, #3, #2 ; Extract bit[4:3] into R1
    TBB    [PC, R1]
BrTable2
    DCB    ((P2     -BrTable2)/2) ; Branch to P2    if A[4:3] = 00
    DCB    ((P3     -BrTable2)/2) ; Branch to P3    if A[4:3] = 01
    DCB    ((P4     -BrTable2)/2) ; Branch to P4    if A[4:3] = 10
    DCB    ((P4     -BrTable2)/2) ; Branch to P4    if A[4:3] = 11
DecodeA2
    TST    R0, #4 ; Only 1 bit is tested, so no need to use UBFX
    BEQ    P5
    B      P6
P0  ...    ; Process 0
P1  ...    ; Process 1
P2  ...    ; Process 2
P3  ...    ; Process 3
P4  ...    ; Process 4
P5  ...    ; Process 5
P6  ...    ; Process 6

This code completes the decision tree in a short assembler code sequence. If the branch target 
is larger, the instruction TBH will have to be used instead of TBB.
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Exceptions Programming
CHAPTER 11

In This Chapter:

● Using Interrupts
● Exception/Interrupt Handlers
● Software Interrupts
● Example with Exception Handlers
● Using SVC
● SVC Example: Use for Output Functions
●  Using SVC with C

Using Interrupts

Interrupts are used in almost all embedded applications. In the Cortex-M3 processor, the 
interrupt controller NVIC handles a number of processing tasks for you, including priority 
checking and stacking/unstacking of registers. However, a number of tasks have to be 
prepared when an interrupt is used:

• Stack setup

• Vector table setup

• Interrupt priority setup

• Enable the interrupt

Stack Setup

For simple application development, you can use the MSP for the whole program. That way 
you need to reserve memory that’s just large enough and set the MSP to the top of the stack. 
When determining the stack size required, besides checking the stack level that could be used 
by the software, you also need to check how many levels of nested interrupts can occur.
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For each level of nested interrupts, you need at least eight words of stack. The processing 
inside interrupt handlers might need extra stack space as well.

Since the stack operation in the Cortex-M3 is full descending, it is common to put the 
stack initial value at the end of the static memory so that the free space in the SRAM is not 
fragmented.

SRAM

Flash

Peripherals

Memory
Address

Stack Pointer
Initial Value

Program

Data

Stack

Figure 11.1 A Simple Memory Usage 
Example

For applications that use separate stacks for user code and kernel code, the main stack should 
have enough memory for the nested interrupt handlers as well as the stack memory used by 
the kernel code. The process stack should have enough memory for the user application code 
plus one level of stacking space (eight words). This is because stacking from the user thread to 
the fi rst level of the interrupt handler uses the process stack.

Vector Table Setup

For simple applications that have fi xed interrupt handlers, the vector table can be coded in 
ROM. In this case there is no need to set up the vector table during run time. However, in 
many applications, it is necessary to change the interrupt handlers for different situations. 
Then you will need to relocate the vector table to a writable memory.

Before the vector table is relocated, you might need to copy the existing vector table content 
to the new vector table location. This includes vector addresses for fault handlers, the NMI, 
system calls, and so on. Otherwise, invalid vector addresses will be fetched by the processor if 
these exceptions take place after the vector table relocation.
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After the necessary vector table items are set up and the vector table is relocated, we can add 
new vectors to the vector table. For example:

       ; Subroutine for setting vector of an exception based on 
; exception type

      ; (For IRQs add 16 : IRQ #0 = exception type 16)
SetVector
      ; Input R0 = exception type
      ; Input R1 = vector address value
      PUSH {R2, LR}
      LDR  R2,=0xE000ED08       ; Vector table offset register
      LDR  R2, [R2]
       STR  R1, [R2, R0, LSL #2]  ; Write vector to VectTblOffset+ 

; ExcpType*4
      POP  {R2, PC}             ; Return

Interrupt Priority Setup

By default, after a reset all exceptions with programmable priority are in priority level 0. 
For hard fault exceptions and NMI, the priority levels are �1 and �2, respectively. To 
program priority-level registers, we can take advantage of the fact that the registers are byte 
addressable, making the coding easier. For example:

      ; Setting IRQ #4 priority to 0xC0
      LDR  R0, =0xE000E400  ; External Interrupt Priority Reg starting 

; address
      LDR  R1, =0xC0       ; Priority level
      STRB R1, [R0, #4]    ; Set IRQ #4 priority (Byte write)

In the Cortex-M3, the width of interrupt priority confi guration registers is specifi ed by chip 
manufacturers. The minimum width is 3 bits and the maximum is 8 bits. You can determine 
the implemented width by writing 0xFF to one of the priority confi guration registers and 
reading it back. For example:

      ; Determine the implemented priority width
       LDR    R0,=0xE000E400  ; Priority Confi guration register for 

; external interrupt #0
      LDR    R1,=0xFF
      STRB   R1,[R0]        ; Write 0xFF (note : byte size write)
      LDRB   R1,[R0]        ; Read back (e.g. 0xE0 for 3-bits)
      RBIT   R2, R1          ; Bit reverse R2 (e.g. 0x07000000 for 

; 3-bits)
      CLZ    R1, R2         ;  Count leading zeros (e.g. 0x5 for 3-bits)
      MOV    R2, #8
       SUB     R2, R2, R1    ; Get implemented width of priority

; (e.g. 8-5=3 for 3-bits)
      MOV    R1, #0x0
      STRB   R1,[R0]        ; Restore to reset value (0x0)
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If your application needs to be portable, it is best to use priority levels 0x00, 0x20, 0x40, 
0x60, 0x80, 0xA0, 0xC0, and 0xE0 only. This is because all Cortex-M3 devices should have 
these priority levels.

Do not forget to set up the priority for system exceptions and fault handler exceptions as well. 
If it is necessary for some of the important interrupts to have higher priority than other system 
exceptions or fault handlers, you’ll need to reduce the priority level of these system exceptions 
and fault handlers so that the important interrupts can preempt these handlers.

Enable the Interrupt

After the vector table and interrupt priority are set up, it’s time to enable the interrupt. 
However, two steps might be required before you actually enable the interrupt:

1. If the vector table is located in a memory region that is write buffered, a Data 
Synchronization Barrier (DSB) instruction might be needed to ensure that the vector table 
memory is updated. In most cases the memory write should be completed within a few 
clock cycles. However, if your software needs to be portable between different Cortex-M3 
products, this step ensures that the core will get the updated vector if the interrupt takes 
place immediately after being enabled.

2. An interrupt might already be pended or asserted beforehand, so it might be needed 
to clear the pending status. For example, signal glitches during power-up might have 
accidentally triggered some interrupt generation logic. In addition, in some peripherals 
such as UART, noise from the UART receiver before connection might be mistaken as 
data and can cause an interrupt to be pended. Therefore, it might be necessary to check 
and clear the pending status of an interrupt before enabling it.

Inside the NVIC, two separate register addresses are used for enabling and disabling 
interrupts. This duality ensures that each interrupt can be enabled or disabled without affecting 
or losing the other interrupt enable status. Otherwise, through software-based READ-
MODIFY-WRITE, changes in enable register status carried out by interrupt handlers could 
be lost. To set an enable, the software needs to compute the correct bit location in the SETEN 
registers in the NVIC and write a 1 to it. Similarly, to clear an interrupt, the software needs to 
write a 1 to the corresponding bit in the CLREN registers:

        ; A subroutine to enable an IRQ based on IRQ number
EnableIRQ
        ; Input R0 = IRQ number
        PUSH   {R0-R2, LR}
        AND.W  R1, R0, #0x1F   ; Generate enable bit pattern for 

; the IRQ
        MOV    R2, #1
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        LSL    R2, R2, R1     ; Bit pattern = (0x1 << (N & 0x1F))
         AND.W  R1, R0, #0xE0   ; Generate address offset if IRQ number 

; is above 31
         LSR    R1, R1, #3      ; Address offset = (N/32)*4 (Each word 

; has 32 IRQ enable)
         LDR    R0,=0xE000E100  ; SETEN register for external interrupt 

; #31-#0
        STR    R2, [R0, R1]   ; Write bit pattern to SETEN register
        POP    {R0-R2, PC}    ; Restore registers and Return

Likewise, we can write another subroutine for disabling IRQ:

        ; A subroutine to Disable an IRQ based on IRQ number
DisableIRQ
        ; Input R0 = IRQ number
        PUSH   {R0-R2, LR}
        AND.W  R1, R0, #0x1F   ; Generate Disable bit pattern for

; the IRQ
        MOV    R2, #1
        LSL    R2, R2, R1     ; Bit pattern = (0x1 << (N & 0x1F))
         AND.W  R1, R0, #0xE0   ; Generate address offset if IRQ number 

; is above 31
         LSR    R1, R1, #3      ; Address offset = (N/32)*4 (Each word 

; has 32 IRQ enable)
         LDR    R0,=0xE000E180  ; CLREN register for external interrupt 

; #31-#0
        STR    R2, [R0, R1]   ; Write bit pattern to CLREN register
        POP    {R0-R2, PC}    ; Restore registers and Return

Similar subroutines can be developed for setting and clearing IRQ pending status registers.

Accessing NVIC Interrupt Registers

Most registers in the NVIC can be accessed using word, half word, or byte transfers. 
Selecting the right transfer size can make your program development easier. For example, 
priority-level registers are best programmed with byte transfers. In this way there is no 
need to worry about accidentally changing the priority of other exceptions.

Exception/Interrupt Handlers

In the Cortex-M3, interrupt handlers can be programmed completely in C, whereas in 
ARM7, an assembly handler is commonly used to ensure that all registers are saved and, in 
cases of systems with nested interrupt support, the processor needs to switch to a different 
mode to prevent losing information. These steps are not required in the Cortex-M3, making 
programming much easier.
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In assembler, a simple exception handler might look like this:

irq1_handler
        ; Process IRQ request
        ...
        ; Deassert IRQ request in peripheral
        ...
        ; Interrupt return
        BX   LR

In many cases, the interrupt handler requires more than R0–R3 and R12 to process the 
interrupt, so we might need to save some other registers as well. The following example saves 
all registers that are not saved during the stacking process, but if some of the registers are not 
used by the exception handler, they can be omitted from the saved register list:

irq1_handler
         PUSH  {R4-R11, LR}  ; Save all registers that are not saved 

; during stacking
        ; Process IRQ request
        ...
        ; Deassert IRQ request in peripheral (optional)
        ...
        POP   {R4-R11, PC} ; Restore registers and Interrupt return

Since POP is one of the instructions that can start interrupt returns, we can combine the 
register restore and interrupt return in the same instruction.

Depending on the design of a peripheral, it might be necessary for an exception handler to 
program the peripheral to deassert the exception request. If the exception request from the 
peripheral to the NVIC is a pulse signal, then there is no need for the exception handler to 
clear the exception request. Otherwise, the exception handler will need to clear the exception 
request so that it won't get pended again immediately after exception exit. In traditional ARM 
processors, a peripheral has to maintain its interrupt request until it is served, because the 
interrupt controllers designed for previous ARM cores do not have the pending memory.

With the Cortex-M3, if a peripheral generates interrupt requests in the form of pulses, 
the NVIC can store the request as a pending request status. Once the processor enters the 
exception handler, the pending status is cleared automatically. In this way, the exception 
handler does not have to program the peripheral to clear the interrupt request.

Software Interrupts

There are various ways to trigger an interrupt:

• External interrupt input

• Setting an interrupt pending register in the NVIC (see Chapter 8)

• Via the Software Trigger Interrupt Register (STIR) in the NVIC (see Chapter 8)
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In most cases, some of the interrupts are unused and can be used as software interrupts. 
Software interrupts can work similarly to SVC, allowing accesses to system services. 
However, by default user programs cannot access the NVIC, except that they can access the 
NVIC's STIR only if the USERSETMPEND bit in the NVIC Confi guration Control register is 
set (see Table D.17 in Appendix D).

Unlike the SVC, software interrupts are not precise. In other words, the interrupt preemption 
does not necessarily happen immediately, even when there is no blocking from interrupt mask 
registers or other interrupt service routines. As a result, if the instruction immediately following 
the write to the NVIC STIR depends on the result of the software interrupt, the operation could 
fail because the software interrupt could invoke after the instruction is executed.

To solve this problem, use the DSB instruction. For example:

      MOV    R0, #SOFTWARE_INTERRUPT_NUMBER
       LDR    R1,=0xE000EF00  ; NVIC Software Interrupt Trigger 

; Register address
      STR    R0, [R1]       ; Trigger software interrupt
      DSB                   ; Data synchronization barrier
      ...

However, there is still another possible problem: If the interrupt mask register is set or if the 
program code generating the software interrupt is an exception handler itself, there could be a 
chance that the software interrupt cannot execute. Therefore, the program code generating the 
software interrupt should check to see whether the software interrupt has been executed. This 
can be done by having a software fl ag set by the software interrupt handler.

Finally, setting USERSETMPEND can lead to another problem. After this is set, user 
programs can trigger any software interrupt except system exceptions. As a result, if the 
USERSETMPEND is used and the system contains untrusted user programs, exception 
handlers will need to check whether the exception is allowed, because it could have been 
triggered from user programs. Ideally, if a system contains untrusted user programs, it is best 
to provide system services only via SVC.

Example with Exception Handlers

In Chapter 7, we mentioned that the starting vector table should contain a reset vector, an NMI 
vector, and a hard fault vector, since the NMI and hard fault handler can take place without 
any exception enabling. After the program starts, we can then relocate the vector table to a 
different place in the SRAM. Depending on the application, relocation of the vector table 
might not be necessary. In the following example, we put the newly relocated vector table in 
the beginning of the SRAM, and then the data variables follow after it:

STACK_TOP     EQU   0x20002000   ; constant for SP starting value
NVIC_SETEN    EQU   0xE000E100   ; Set enable registers base address
NVIC_VECTTBL  EQU   0xE000ED08   ; Vector Table Offset Register
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NVIC_AIRCR     EQU   0xE000ED0C    ; Application Interrupt and Reset 
; Control Register

NVIC_IRQPRI    EQU   0xE000E400   ; Interrupt Priority Level register

               AREA  | Header Code|, CODE
               DCD   STACK_TOP    ; SP initial value
               DCD   Start        ; Reset vector
               DCD   Nmi_Handler  ; NMI handler
               DCD   Hf_Handler   ; Hard fault handler
               ENTRY
Start          ; Start of main program
               ; initialize registers
               MOV   r0, #0        ; initialize registers
               MOV   r1, #0
               ...

               ; Copy old vector table to new vector table
               LDR   r0,=0
               LDR   r1,=VectorTableBase
               LDMIA r0!,{r2-r5} ; Copy 4 words
               STMIA r1!,{r2-r5}

               DSB   ; Data synchronization barrier.

               ; Set vector table offset register
               LDR   r0,=NVIC_VECTTBL
               LDR   r1,=VectorTableBase
               STR   r1,[r0]

               ...
               ; Setup Priority group register
               LDR   r0,=NVIC_AIRCR
               LDR   r1,=0x05FA0500    ; Priority group 5
               STR   R1,[r0]

               ; Setup IRQ 0 vector
               MOV   r0, #0     ; IRQ#0
               LDR   r1, =Irq0_Handler
               BL    SetupIrqHandler

               ; Setup priority
               LDR   r0,=NVIC_IRQPRI
               LDR   r1,=0xC0   ; IRQ#0 priority
                STRB  r1,[r0,#0]  ; Set IRQ0 priority at offset=0.

; Note : Byte store
                                ;(IRQ#1 will have offset = 1)
                DSB    ; Data synchronization barrier. Make sure 

; everything ready before enabling interrupt
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           MOV   r0, #0     ; select IRQ#0
           BL    EnableIRQ

           ...
           ;------------------------
           ; functions
SetupIrqHandler
           ; Input R0 = IRQ number
           ;       R1 = IRQ handler
           PUSH    {R0, R2, LR}
           LDR     R2,=NVIC_VECTTBL ; Get vector table offset
           LDR     R2,[R2]
           ADD     R0, #16      ; Exception number = IRQ number + 16
           LSL     R0, R0, #2   ; Times 4 (each vector is 4 bytes)
           ADD     R2, R0       ; Find vector address
           STR     R1,[R2]      ; store vector handler
           POP     {R0, R2, PC} ; Return
EnableIRQ

           ; Input R0 = IRQ number
           PUSH    {R0 - R3, LR}
           AND     R1, R0, #0x1F ; Get lower 5 bit to fi nd bit pattern
           MOV     R2, #1
           LSL     R2, R2, R1    ; Bit pattern in R2
           BIC     R0, #0x1F
            LSR     R0, #3         ; word offset. (IRQ number can be 

; higher than 32)
           LDR     R1, =NVIC_SETEN
           STR     R2,[R1, R0]   ; Set enable bit
           POP     {R0 - R3, PC} ; Return
           ;------------------------
           ; Exception handlers
Hf_Handler

           ...               ; insert your code here
           BX      LR        ; Return
Nmi_Handler
           ...               ; insert your code here
           BX      LR        ; Return
Irq0_Handler
           ...               ; insert your code here
           BX      LR        ; Return
           ;------------------------
           AREA    | Header Data|, DATA
           ALIGN   4
           ; Relocated vector table
VectorTableBase    SPACE 256   ; Number of bytes
VectorTableEnd                 ; (256 / 4 = upto 64 exceptions)
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MyData1     DCD    0     ; Variables
MyData2     DCD    0

            END          ; End of fi le

This is a slightly long example. Let’s start from the end, the data region fi rst.

In the data memory region (almost the end of the program), we defi ne a space of 256 bytes 
as a vector table (SPACE 256). This allows up to 64 exception vectors to be stored here. You 
might want to change the size if you want less or more space for the vector table. The other 
software variables follow the vector table space, so the variable MyData1 is now in address 
0x20000100.

In the beginning of the code, we defi ned a number of address constants for the rest of the 
program. So, instead of using numbers, we can use these constant names to make the program 
easier to understand.

The initial vector table now contains the reset vector, the NMI vector, and the hard fault 
handler vector. The preceding example code illustrates how to set up the exception vectors and 
does not contain actual NMI, hard fault, or IRQ handlers. Depending on the actual application, 
these handlers will have to be developed. The example uses BX LR as exception return, but 
that could be replaced by other valid exception return instructions.

After the initialization of registers, we copy the vector handlers to the new vector table in the 
SRAM. This is done by one multiple load and one multiple store instruction. If more vectors 
need to be copied, we can simply add extra load/store multiple instructions or increase the 
number of words to be copied for each pair of load and store instructions.

After the vector table is ready, we can relocate the vector table to the new one in the SRAM. 
However, to ensure that the transfer of the vector handler is complete, the DSB instruction
is used.

We then need to set up the rest of the interrupt setting. The fi rst one is the priority group setup. 
This needs to be done only once. In the example, two subroutines called SetupIrqHandler and 
EnableIRQ have been developed to make it easier to set up interrupts. Using the same code 
and simply changing the NVIC_SETEN to NVIC_CLREN, we can also add a similar function 
called DisableIRQ. After the handler and priority level have been set up, the IRQ can then be 
enabled.

Using SVC

SVC is a common way to allow user applications to access the API in an OS. This is because 
the user applications only need to know what parameters to pass to the OS; they don’t need to 
know the memory address of API functions.
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SVC instructions contain a parameter, which is 8-bit immediate data inside the instruction. 
The value is required for using the SVC instruction. For example:

 SVC 3 ; Call system service number 3

Inside the SVC handler, it will need to extract the parameter back from the instruction. To do 
this, the procedures illustrated in Figure 11.2 can be used.

Determine which stack
was used in calling

process using the LR
value (bit[2])

Locate stacked
PC using MSP

Locate stacked
PC using PSP

Extract immediate
value from stacked PC

Bit 2�0 Bit 2�1

Figure 11.2 One Way to Extract the SVC Parameter

Here’s some simple assembly code to do this:

svc_handler
       TST     LR, #0x4      ; Test EXC_RETURN number in LR bit 2
       ITE     EQ            ; if zero (equal) then
       MRSEQ   R0, MSP       ; Main Stack was used, put MSP in R0
       MRSNE   R0, PSP        ; else, Process Stack was used, put PSP 

; in R0
       LDR     R1,[R0,#24]   ; Get stacked PC from stack
       LDRB    R0,[R1,#-2]    ; Get the immediate data from the 

; instruction
       ; Now the immediate data is in R0
       ...
       BX      LR            ; Return to calling function

Once the calling parameter of the SVC is determined, the corresponding SVC function can be 
executed. An effi cient way to branch into the correct SVC service code is to use table branch 
instructions such as TBB and TBH. However, if the table branch instruction is used, unless it 
is certain that the SVC calling parameter contains a correct value, you should do a value check 
on the parameter to prevent invalid SVC calling from crashing the system.
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Since an SVC call cannot request another SVC service via the exception mechanism, the SVC 
handler should directly call another SVC function (for example, BL).

SVC Example: Use for Output Functions

Previously we developed various subroutines for output functions. Sometimes it is not good 
enough to use BL to call the subroutines—for example, when the functions are in different 
object fi les so that we might not be able to fi nd out the address of the subroutines or when the 
branch address range is too large. In these cases, we might want to use SVC to act as an entry 
point for the output functions. For example:

      LDR    R0,=HELLO_TXT
      SVC    0        ; Display string pointed to by R0
      MOV    R0,#‘A’
      SVC    1        ; Display character in R0
      LDR    R0,=0xC123456
      SVC    2        ; Display hexadecimal value in R0
      MOV    R0,#1234
      SVC    3        ; Display decimal value in R0

To use SVC, we need to set up the SVC handler. We can modify the function that we have 
done for IRQ. The only difference is that this function takes an exception type as input (SVC 
is exception type 11). In addition, this time we have further optimized the code to use the 
Thumb-2 instruction features:

SetupExcpHandler
        ; Input R0 = Exception number
        ;       R1 = Exception handler
        PUSH  {R0, R2, LR}
        LDR   R2,=NVIC_VECTTBL ; Get vector table offset
        LDR   R2,[R2]
        STR.W R1,[R2, R0, LSL #2] ; store vector handler in [R2+R0<<2]
        POP   {R0, R2, PC} ; Return

For svc_handler, the SVC calling number can be extracted as in the previous example, and 
the parameter passed to the SVC can be accessed by reading from the stack. In addition, the 
decision branches to reach various functions are added:

svc_handler
       TST     LR, #0x4     ; Test EXC_RETURN number in LR bit 2
       ITTEE   EQ           ; if zero (equal) then
       MRSEQ   R1, MSP      ; Main Stack was used, put MSP in R0
       MRSNE   R1, PSP       ; else, Process Stack was used, put PSP 

; in R0
       LDR     R0,[R1,#0]   ; Get stacked R0 from stack
       LDR     R1,[R1,#24]  ; Get stacked PC from stack
       LDRB    R1,[R1,#-2]   ; Get the immediate data from the 

; instruction
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       ; Now the immediate data is in R1, input parameter is in R0
       PUSH    {LR}            ; Store LR to stack
       CBNZ    R1,svc_handler_1
       BL      Puts            ; Branch to Puts
       B       svc_handler_end
svc_handler_1
       CMP     R1,#1
       BNE     svc_handler_2
       BL      Putc            ; Branch to Putc
       B       svc_handler_end
svc_handler_2
       CMP     R1,#2
       BNE     svc_handler_3
       BL      PutHex          ; Branch to PutHex
       B       svc_handler_end
svc_handler_3
       CMP     R1,#3
       BNE     svc_handler_4
       BL      PutDec          ; Branch to PutDec
       B       svc_handler_end
svc_handler_4
       B       error           ; input not known
       ...
svc_handler_end
       POP     {PC}            ; Return

The svc_handler code should be put together with the outputting functions so that we can 
ensure that they are within the allowed branch range.

Notice that instead of the current contents of the register bank, the stacked register contents 
are used for parameter passing. This is because if a higher-priority interrupt takes place when 
the SVC is executed, the SVC will start after other interrupt handlers (tail chaining), and the 
contents of R0–R3 and R12 might be changed by the interrupt handler. This is caused by the 
characteristic that unstacking is not carried out if there is tail chaining of interrupts. For example:

1. A parameter is put in R0 as a parameter.

2. SVC is executed at the same time a higher-priority interrupt takes place.

3. Stacking is carried out, and R0–R3, R12, LR, PC, and xPSR are saved to the stack.

4. The interrupt handler is executed. R0–R3 and R12 can be changed by the handler. This is 
acceptable because these registers will be restored by hardware unstacking.

5. The SVC handler tail chains the interrupt handler. When SVC is entered, the contents in 
R0–R3 and R12 can be different from the value when SVC is called. However, the correct 
parameter is stored in the stack and can be accessed by the SVC handler.
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Make the Most of the Addressing Modes

From the code examples of the SetupIrqHandler and SetupExcpHandler routines, we fi nd 
that the code can be shortened a lot if we utilize the addressing mode feature in the 
Cortex-M3. In SetupIrqHandler, the destination address of the IRQ vector is calculated, 
and then the store is carried out:

SetupIrqHandler
   PUSH  {R0, R2, LR}
   LDR   R2,=NVIC_VECTTBL ; Get vector table offset        ; Step 1
   LDR   R2,[R2]                                           ; Step 2
   ADD   R0, #16      ; Exception number = IRQ number + 16 ; Step 3
   LSL   R0, R0, #2   ; Times 4 (each vector is 4 bytes)   ; Step 4
   ADD   R2, R0       ; Find vector address                ; Step 5
   STR   R1,[R2]      ; store vector handler               ; Step 6
   POP   {R0, R2, PC} ; Return

In SetupExcpHandler, the operation Step 4–6 are reduced to just one step:

SetupExcpHandler
         PUSH    {R0, R2, LR}
         LDR     R2,=NVIC_VECTTBL ; Get vector table offset
         LDR     R2,[R2]
          STR.W   R1,[R2, R0, LSL #2]  ; store vector handler in 

; [R2+R0<<2]
         POP    {R0, R2, PC} ; Return

In general, we can reduce the number of instructions required if the data address is like 
one of these:

• Rn � 2N*Rm

• Rn �/� immediate_offset

For the SetupIrqHandler routine, the shortest code we can get is this:

SetupIrqHandler
         PUSH   {R0, R2, LR}
         LDR    R2,=NVIC_VECTTBL ; Get vector table offset ; Step 1
         LDR    R2,[R2]                                    ; Step 2
         ADD    R2, #(16*4)      ; Get IRQ vector start    ; Step 3
         STR.W  R1,[R2, R0, LSL #2] ; Store vector handler ; Step 4
         POP    {R0, R2, PC} ; Return
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Using SVC with C

In most cases, an assembler handler code is needed for parameter passing to SVC functions. 
This is because the parameters should be passed by the stack, not by registers, as explained 
earlier. If the SVC handler is to be developed in C, a simple assembly wrapper code can 
be used to obtain the stacked register location and pass it on to the SVC handler. The SVC 
handler can then extract the SVC number and parameters from the stack pointer information. 
Assuming that RealView Development Suite (RVDS) or KEIL RealView Microcontroller 
Development Kit is used, the assembler wrapper can be implemented with Embedded 
Assembler:

// Assembler wrapper for extracting stack frame starting location.
// Starting of stack frame is put into R0 and then branch to the
// actual SVC handler.
__asm void svc_handler_wrapper(void)
{
  IMPORT svc_handler
  TST     LR, #4
  ITE     EQ
  MRSEQ   R0, MSP
  MRSNE   R0, PSP
  B       svc_handler
}  // No need to add return (BX LR) because return of svc_handler 
// should return execution to SVC calling program directly

The rest of the SVC handler can then be implemented in C using R0 as input (stack frame 
starting location), which is used to extract the SVC number and passing parameters
(R0–R3):

// SVC handler in C, with stack frame location as input parameter
// and use it as a memory pointer pointing to an array of arguments.
// svc_args[0] = R0 , svc_args[1] = R1
// svc_args[2] = R2 , svc_args[3] = R3
// svc_args[4] = R12, svc_args[5] = LR
// svc_args[6] = Return address (Stacked PC)
// svc_args[7] = xPSR
void svc_handler(unsigned int * svc_args)
{
  unsigned int svc_number;
  unsigned int svc_r0;
  unsigned int svc_r1;
  unsigned int svc_r2;
  unsigned int svc_r3;

  svc_number = ((char *) svc_args[6])[-2]; // Memory[(Stacked PC)-2]
  svc_r0     = ((unsigned long) svc_args[0]);
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  svc_r1  = ((unsigned long) svc_args[1]);
  svc_r2  = ((unsigned long) svc_args[2]);
  svc_r3  = ((unsigned long) svc_args[3]);
printf (“SVC number = %xn”, svc_number);
printf (“SVC parameter 0 = %x\n”, svc_r0);
printf (“SVC parameter 1 = %x\n”, svc_r1);
printf (“SVC parameter 2 = %x\n”, svc_r2);
printf (“SVC parameter 3 = %x\n”, svc_r3);

return;
}

Note that SVC cannot return results to the calling program in the same way as in normal C 
functions. Normal C functions return values by defi ning the function with a data type such as 
unsigned int func( ) and use return to pass the return value, which actually puts the value in 
register R0. If an SVC handler put return values in register R0 to R3 when exiting the handler, 
the register values would be overwritten by the unstacking sequence. Therefore, if an SVC has 
to return results to a calling program, it must directly modify the stack frame so that the value 
can be loaded into the register during unstacking.

To call an SVC inside a C program for ARM RealView Development Suite (RVDS) or KEIL 
RealView Microcontroller Development Kit (RV-MDK), we can use the _ _svc compiler 
keyword. For example, if four variables are to be passed to an SVC function number 3, an 
SVC named call_svc_3 can be declared as:

void __svc(0x03) call_svc_3(unsigned long svc_r0, unsigned long
svc_r1, unsigned long svc_r2, unsigned long svc_r3);

This will then allow the C program code to call the system call by:

int main(void)
{
  unsigned long p0, p1, p2, p3; // parameters to pass to SVC handler
  . . .
  call_svc_3(p0, p1, p2, p3); // call SVC number 3, with parameters
                              // p0, p1, p2, p3 pass to the SVC
  . . .
  return;
}

Detailed information on using the _ _svc keyword in RealView Development Suite or RealView 
C Compiler can be found in the RVCT 3.0 Compiler and Library Guide (Ref 6).

For users of the GNU tool chain, since there is no _ _svc keyword in GCC, the SVC has to be 
accessed by inline assembler. For example, if the SVC call number 3 is needed with one input 
variable and it returns one variable via register R0 (according to the AAPCS, Ref 5, the fi rst 
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passing variable will use register R0), the following inline Assembler code can be used to call 
the SVC:

int MyDataIn � 0x123;

__asm __volatile (“mov R0, %0\n”
                  “svc 3     \n” : “” : “r” (MyDataIn) );

This inline assembler code can be broken down into the following parts, with input data 
specifi ed by r (MyDataIn) and no output fi eld (indicated as "" in the preceding code):

__asm ( assembler_code : output_list : input_list )

More examples using inline Assembler in the GNU tool chain can be found in Chapter 19 of 
this book. For complete details on passing parameters to or from inline Assembler, refer to the 
GNU tool chain documentation.
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Advanced Programming Features 
and System Behavior

CHAPTER 12

In This Chapter:

● Running a System with Two Separate Stacks
● Double-Word Stack Alignment
● Nonbase Thread Enable
● Performance Consideration
● Lockup Situations

Running a System with Two Separate Stacks

One of the important features of v7-M architecture is the capability to allow the user 
application stack to be separated from the privileged/kernel stack. If the optional MPU is 
implemented, it could be used to block user applications from accessing kernel stack memory 
so that they cannot crash the kernel by memory corruption.

Typically, a robust system based on the Cortex-M3 has the following properties:

• Exception handlers using MSP

• Kernel code invoked by a SYSTICK exception at regular intervals, running in the 
privileged access level for task scheduling and system management

• User applications running as threads with the user access level (nonprivileged); these 
applications use PSP

• Stack memory for kernel and exception handlers is pointed to by the MSP, and the 
stack memory is restricted to privileged accesses only if the MPU is available

• Stack memory for user applications is pointed to by the PSP
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Assume that the system memory has an SRAM memory. We could set up the MPU so that 
the SRAM is divided into two regions for user and privileged access. Each region is used by 
application data as well as stack memory space. Since stack operation in the Cortex-M3 is full 
descending, the initial value of stack pointers needs to be pointed to the top of the regions.

User accessible

Memory
Address

Main Stack Pointer
Initial Value

Privileged
Data

Privileged
Stack

Privileged
access only

SRAM

User Data

User Stack

Process Stack
Pointer Initial Value

Figure 12.1 Example Memory Use with Privileged Data and User Application Data

After power-up, only the MSP is initialized (by fetching address 0x0 in the power-up 
sequence). Additional steps are required to set up a completely robust two-stack system. For 
applications in assembly code, it can simply be:

         ; Start at privileged level (this code locates in user  
; accessible memory)

        BL      MpuSetup     ; Setup MPU regions and enable memory 
; protection

        LDR     R0,�PSP_TOP ;  Setup Process SP to top of process stack
        MSR     PSP, R0
        BL      SystickSetup ; Setup Systick and systick exception to 

; invoke OS kernel at regular intervals
        MOV    R0, #0x3      ; Setup CONTROL register so that user 

; program use PSP,
        MSR     CONTROL, R0 ; and switch current access level to user
        B       UserApplicationStart   ; Now we are in user access 

; level. Start user code

This arrangement is fi ne for assembler, but for C programs, switching stack pointers in 
the middle of a C function can cause loss of local variables (because in C functions or 
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subroutines, local variables may be put onto stack memory). The Cortex-M3 TRM (Ref 1) 
suggests that we use an ISR like SVC to invoke the kernel, then change the stack pointer by 
modifying the EXC_RETURN value.

Initialization

OS
Initialization

Set up PSP
and create user

stack frame
(PC, xPSR)

Modify
EXC_RETURN
to 0xFFFFFFFD

and return

User
Application

Operating System 

User stack
frame load
to registers

SVC

EXC_RETURN
� 0xFFFFFFF9

Privileged
Handler

Privileged
Thread

User Thread

Figure 12.2 Initialization of Multiple Stacks in a Simple OS

In most cases, EXC_RETURN modifi cation and stack switching are included in the operating 
system. After the user application starts, the SYSTICK exception can be used regularly to 
invoke the operating system for system management and possibly arrange context switching if 
needed.

Set PendSV
to carry out

context switch
later

OS
system

management

Save PSP for
Application #1;

set PSP to
stack frame for
Application #2

User
Application #2

User
Application #1

SYSTICK

SYSTICK
Exception

PendSV

User stack
frame #2 load

to registers

Exception
Return

EXC_RETURN
� 0xFFFFFFFD

Privileged
Handler

Privileged
Thread

User Thread

Register
contents

saved to Stack
Frame #1

Figure 12.3 Context Switching in a Simple OS

Note that context switching is carried out in PendSV (a low-priority exception) to prevent 
context switching at the middle of an interrupt handler.

However, many applications do not require an operating system, but it is still helpful to use 
separate stacks for different sections of application code as a way to improve reliability. One 
possible way to handle this is to start Cortex-M3 with the MSP pointed to a process stack 
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region. This way the initialization is done with the process stack region but using MSP. Before 
starting the user application, the following code is executed:

    ; Start at privileged level, MSP point to User stack
    MpuSetup();     // Setup MPU regions and enable memory protection
    SystickSetup(); // Setup Systick and systick exception for routine 
                    // system management code
    SwitchStackPointer();  // Call an assembly subroutine to switch SP
      /*; ------Inside SwitchStackPointer -----
      PUSH  {R0, R1, LR}
      MRS   R0, MSP       ; Save current stack pointer
      LDR   R1, �MSP_TOP  ; Change MSP to new location
      MSR   MSP, R1
      MSR   PSP, R0       ; Store current stack pointer in PSP
      MOV   R0, #0x3
      MSR   CONTROL, R0    ; Switch to user mode, and use PSP as 

; current stack
      POP   {R0, R1, PC}  ; Return
      ; ------ Back to C program -----*/
    ; Now we are in User mode, using PSP and the local variables 
    ; still here
    UserApplicationStart();    // Start application code in user mode

Double-Word Stack Alignment

In applications that conform to AAPCS1 it is necessary to ensure that the stacking of registers 
at exception handling are aligned to the primitive data size (1, 2, 4, or 8 bytes). This is a 
confi gurable option on the Cortex-M3 processor. To enable this feature, the STKALIGN bit in 
the NVIC Confi guration Control register needs to be set (see Table D.17 in Appendix D). For 
example, this can be done in assembly language:

     LDR      R0,�0xE000ED14  ; Set R0 to be address of NVIC CCR
     LDR      R1, [R0]
     ORR.W    R1, R1, #0x200  ; Set STKALIGN bit
     STR      R1, [R0]        ; Write to NVIC CCR

or in C language:

#defi ne NVIC_CCR ((volatile unsigned long *)(0xE000ED14))
*NVIC_CCR � *NVIC_CCR | 0x200; /* Set STKALIGN in NVIC */

When the STKALIGN bit is set during exception stacking, bit 9 of the stacked xPSR is 
used to indicate whether a stack pointer adjustment has been made to align the stacking. 

1 Procedure Call Standard for the ARM Architecture (AAPCS) (Ref 5). An advisory note has been published on  
the ARM Web site regarding SP alignment and AAPCS; see www.arm.com/pdfs/ABI-Advisory-1.pdf.
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When unstacking, the SP adjustment checks bit 9 of the stacked xPSR and adjusts the SP 
accordingly.

To prevent stack data corruption, the STKALIGN bit must not be changed within an exception 
handler; this can cause a mismatch of stack pointer location before and after the exception.

This feature is available from Cortex-M3 revision 1 onward. Early Cortex-M3 products based 
on revision 0 do not have this feature. This feature should be used if the AAPCS conformation 
is required. Also, this feature is recommended when the application (or part of it) is developed 
in C and when the program contains data that is double-word size.

Nonbase Thread Enable

In the Cortex-M3 it is possible to switch a running interrupt handler from privileged level to 
user access level. This is needed when the interrupt handler code is part of a user application 
and should not be allowed to have privileged access. This feature is enabled by the Nonbase 
Thread Enable (NONBASETHRDENA) bit in the NVIC Confi guration Control register.

Use This Feature with Caution

Due to the need to manually adjust the stack and modify stacked data, this feature 
should be avoided in normal application programming. If it is necessary to use this 
feature, it must be done very carefully, and the system designer must ensure that 
the interrupt service routine is terminated correctly. Otherwise, it could cause some 
interrupts with the same or lower priority levels to be masked.

To use this feature, an exception handler redirection is involved. The vector in the vector table 
points to a handler running in privileged mode but located in user mode accessible memory:

redirect_handler
        PUSH     {LR}
        SVC      0     ; A SVC function to change from privileged to 

; user mode
        BL       User_IRQ_Handler
        SVC      1     ; A SVC function to change back from user to 

; privileged mode
        POP      {PC} ; Return

The SVC handler is divided into three parts:

• Determine the parameter when calling SVC.

• SVC service #0 enables the nonbase Thread enable, adjusts the user stack and EXC_
RETURN value, and returns to the redirect handler in user mode, using the process 
stack.
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• SVC service #1 disables the nonbase Thread enable, restores the user stack pointer 
position, and returns to the redirect handler in privileged mode, using the main stack.

svc_handler
       TST     LR, #0x4        ; Test EXC_RETURN bit 2
       ITE     EQ              ; if zero then
       MRSEQ   R0, MSP         ; Get correct stack pointer to R0
       MRSNE   R0, PSP
       LDR     R1,[R0, #24]    ; Get stacked PC
       LDRB    R0,[R1, #-2]    ; Get parameter at stacked PC – 2
       CBZ     r0, svc_service_0
       CMP     r0, #1
       BEQ     svc_service_1
       B.W     Unknown_SVC_Request

svc_service_0   ; Service to switch handler from privileged mode to 
; user mode 

       MRS     R0, PSP         ; Adjust PSP
       SUB     R0, R0, #0x20   ; PSP � PSP � 0x20
       MSR     PSP, R0
       MOV     R1, #0x20        ; Copy stack frame from main stack to 

; process stack

svc_service_0_copy_loop
       SUBS    R1, R1, #4
       LDR     R2,[SP, R1]
       STR     R2,[R0, R1]
       CMP     R1, #0
       BNE     svc_service_0_copy_loop
       STRB    R1,[R0, #0x1C]  ; Clear stacked IPSR of user stack to 0
       LDR     R0, �0xE000ED14 ; Set Non-base thread enable in CCR
       LDR     r1,[r0]
       ORR     r1, #1
       STR     r1,[r0]
       ORR     LR, #0xC ; Change LR to return to thread, using PSP
       BX      LR

svc_service_1   ; Service to switch handler back from user mode to 
; privileged mode

       MRS     R0, PSP          ; Update stacked PC in privileged 
; stack so that it

       LDR     R1,[R0, #0x18]   ; return to the instruction after 2nd 
; SVC in redirect 

       STR     R1,[SP, #0x18]  ; handler
       MRS     R0, PSP          ; Adjust PSP back to what it was 

; before 1st SVC
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       ADD     R0, R0, #0x20
       MSR     PSP, R0
       LDR     R0, �0xE000ED14  ;  Clear Non-base thread enable in CCR
       LDR     r1,[r0]
       BIC     r1, #1
       STR     r1,[r0]
       BIC     LR, #0xC         ; Return to handler mode, using main 

; stack
       BX      LR

The SVC services are used because the only way you can change the IPSR is via an exception 
return. Other exceptions such as software-triggered interrupts could be used, but they are not 
recommended because they are imprecise and could be masked, which means that there is a 
possibility that the required stack copying and switch operation is not carried out immediately. 
The sequence of the code is illustrated in Figure 12.4, which shows the stack pointer changes 
and the current exception priority.

Main Stack
Pointer (MSP)

Process Stack
Pointer (PSP)

Processor State Thread Handler Handler

Memory
Address

User IRQ
Handler

Interrupt SVC 0
SVC 0
Return

SVC 1
ReturnSVC 1

Thread Handler Handler Thread

Interrupt
Return

0 IRQ Number 11 (SVC) 0 11 (SVC) IRQ
Number 0

Priority Level

SVC

Interrupt

Privileged
Thread

User Thread

IRQ Active

IPSR

PSP
manually
adjusted

Stack frame
copied to

process stack

PSP
manually
adjusted

Figure 12.4 Operation of Nonbase Thread Enable
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In the diagram, the manual adjustment of the PSP inside the SVC services is highlighted by 
circles made of dotted lines.

Performance Considerations

To get the best out of the Cortex-M3, a few aspects need to be considered. First, we need to 
avoid memory wait states. During the design stage of the microcontroller or SoC, the designer 
should optimize the memory system design to allow instruction and data accesses to be carried 
out at the same time, and use 32-bit memories if possible. For developers, the memory map 
should be arranged so that program code is executed from the Code region and majority of 
data accesses is done via the system bus. This way data accesses can be carried out at the same 
time as instruction fetches.

Second, the interrupt vector table should also be put into the Code region if possible. Thus 
vector fetch and stacking can be carried out at the same time. If the vector table is located 
in the SRAM, extra clock cycles might result in interrupt latency because both vector fetch 
and stacking could share the same system bus (unless the stack is located in the Code region, 
which uses a D-Code bus).

If possible, avoid using unaligned transfers. An unaligned transfer might take two or more 
AHB transfers to complete and will slow program performance, so plan your data structure 
carefully. In assembly language with ARM tools, you can use the ALIGN directive to ensure 
that a data location is aligned.

Most of you might be using C language for development, but for those who are using 
assembly, you can use a few tricks to speed up parts of the program:

1. Use memory access instruction with offset. When multiple memory locations in a small 
region are to be accessed, instead of writing:

      LDR      R0, =0xE000E400  ; Set interrupt priority #3,#2,#1,#0
      LDR      R1, =0xE0C02000  ; priority levels
      STR      R1,[R0]
      LDR      R0, =0xE000E404  ; Set interrupt priority #7,#6,#5,#4
      LDR      R1, =0xE0E0E0E0  ; priority levels
      STR      R1,[R0]

you can reduce the program code to:

      LDR      R0, =0xE000E400  ; Set interrupt priority #3,#2,#1,#0 
      LDR      R1, =0xE0C02000  ; priority levels
      STR      R1,[R0]
      LDR      R1,=0xE0E0E0E0   ; priority levels
      STR      R1,[R0,#4]       ; Set interrupt priority #7,#6,#5,#4

The second store uses an offset of the fi rst address and hence reduces the number of instructions.
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2. Combine multiple memory accesses into load/store multiple instructions (LDM/STM). 
The preceding example can be further reduced by using STM instruction:

      LDR      R0,�0xE000E400  ; Set interrupt priority base
      LDR      R1,�0xE0C02000  ; priority levels #3,#2,#1,#0
      LDR      R2,�0xE0E0E0E0  ; priority levels #7,#6,#5,#4
      STMIA    R0, {R1, R2}

3. Use IT instruction blocks to replace small conditional branches. Since the Cortex-M3 is 
a pipelined processor, a branch penalty happens when a branch operation is taken. If the 
conditional branch operation is used to skip a few instructions, this can be replaced by the 
IT instruction block, which might save a few clock cycles.

4. If an operation can be carried out by either two Thumb instructions or a single Thumb-
2 instruction, the Thumb-2 instruction method should be used because it gives a shorter 
execution time, despite the fact that the memory size is the same.

Lockup Situations

When an error condition occurs, the corresponding fault handler will be triggered. If another 
fault takes place inside the usage fault/bus fault/memory management fault handler, the hard 
fault handler will be triggered. However, what if we get another fault inside the hard fault 
handler? In this case, a lockup situation will take place.

What Happens During Lockup?

During lockup, the program counter will be forced to 0xFFFFFFFX and will keep fetching 
from that address. In addition, an output signal called LOCKUP from the Cortex-M3 will be 
asserted to indicate the situation. Chip designers might use this signal to trigger a reset at the 
system reset generator.

Lockup can take place when:

• Faults occur inside the hard fault handler (double fault)

• Faults occur inside the NMI handler

• Bus faults occur during the reset sequence (initial SP or PC fetch)

For double-fault situations, it is still possible for the core to respond to an NMI and execute 
the NMI handler. But after the handler completes it will return to the lockup state, with the 
program counter restored to 0xFFFFFFFX. In this case, the system locks up and the current 
priority level is held at �1. If an NMI occurs, the processor will still preempt and execute the 
NMI handler because the NMI has a higher priority (�2) than the current priority level (�1). 
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When the NMI is complete and returns to the lockup state, the current exception priority is 
returned to �1.

Normally, the best way to exit a lockup is to perform a reset. Alternatively, for a system with 
a debugger attached, it is possible to halt the core, change the PC to a different value, and start 
the program execution from there. In most cases this might not be a good idea, since a number 
of registers, including the interrupt system, might need reinitialization before the system can 
be returned to normal operation.

You might wonder why we do not simply reset the core when a lockup takes place. You might 
want to do that in a live system, but during software development we should fi rst try to fi nd 
out the cause of the problem. If we reset the core immediately, we might not be able to analyze 
what went wrong, because registers will be reset and hardware status will be changed. In most 
Cortex-M3 microcontrollers, a watchdog timer can be used to reset the core if it enters the 
lockup state.

Note that a bus fault that occurs during stack when entering a hard fault handler or NMI 
handler does not cause lockup, but the bus fault handler will be pended.

�1/�2

255 to 0

Priority

Hard Fault or NMI Handler

Stacking Unstacking

Faults taking place
here do not cause

lockup

Time

Faults taking place
here cause lockup Faults taking place

here do not cause
lockup

Figure 12.5 Only a Fault Occurring During a Hard Fault or NMI Handler Will Cause Lockup

Avoiding Lockup

It is important to take extra care to prevent lockup problems when you’re developing an NMI 
or hard fault handler. For example, we can avoid unnecessary stack accesses in a hard fault 
handler unless we know that the memory is functioning correctly and the stack pointer is still 

CH12-H8534.indd   202CH12-H8534.indd   202 7/19/07   1:34:49 PM7/19/07   1:34:49 PM



Advanced Programming Features and System Behavior

203

valid. In developing complex systems, one of the possible causes of a bus fault or memory 
fault is stack pointer corruption. If we start the hard fault handler with something like this:

hard_fault_handler
       PUSH    {R4-R7,LR}    ; Bad idea unless you are sure that the 

; stack is safe to use!
       ...

and if the fault was caused by a stack error, we could enter lockup in our hard fault handler 
straight away. In general, when programming hard fault, bus fault, and memory management 
fault handlers, it might be worth checking whether the stack pointer is in valid range before 
we carry out more stack operations. For coding NMI handlers, we can try to reduce risk 
caused by stack operation by using R0–R3 and R12 only, since they are already stacked.

One approach for developing hard fault and NMI handlers is to carry out only the essential 
tasks inside the handlers, and the rest of the tasks, such as error reporting, can be pended using 
a separate exception such as PendSV or a software interrupt. This helps to ensure that the hard 
fault handler or NMI is small and robust.

Furthermore, we should ensure that the NMI and hard fault handler code will not try to use 
SVC instructions. Since SVC always has lower priority than hard fault and NMI, using SVC 
in these handlers will cause lockup. This might look simple, but when your application is 
complex and you call functions from different fi les in your NMI and hard fault handler, you 
might accidentally call a function that contains an SVC instruction. Therefore, before you 
develop your software, you need to carefully plan the SVC implementation.
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The Memory Protection Unit
CHAPTER 13

In This Chapter:

● Overview
● MPU Registers
● Setting Up the MPU
● Typical Setup

Overview

The Cortex-M3 design includes an optional Memory Protection Unit (MPU). Including the 
MPU in the microcontrollers or SoC products provides memory protection features, which can 
make the developed products more robust. The MPU needs to be programmed and enabled 
before use. If the MPU is not enabled, the memory system behavior is the same as though  no 
MPU is present.

The MPU can improve the reliability of an embedded system by:

• Preventing user applications from corrupting data used by the operating system

• Separating data between processing tasks by blocking tasks from accessing others’ 
data

• Allowing memory regions to be defi ned as read-only so that vital data can be protected

• Detecting unexpected memory accesses (for example, stack corruption)

In addition, the MPU can also be used to defi ne memory access characteristics such as caching 
and buffering behaviors for different regions.

The MPU sets up the protection by defi ning the memory map as a number of regions. Up to 
eight regions can be defi ned, but it is also possible to defi ne a default background memory 
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map for privileged accesses. Accesses to memory locations that are not defi ned in the MPU 
regions or not permitted by the region settings will cause the memory management fault 
exception to take place.

MPU regions can be overlapped. If a memory location falls on two regions, the memory 
access attributes and permission will be based on the highest-numbered region. For example, 
if a transfer address is within the address range defi ned for region 1 and region 4, the region 4 
settings will be used.

MPU Registers

The MPU contains a number of registers. The fi rst one is the MPU Type register (see Table 13.1).

Table 13.1 MPU Type Register (0xE000ED90)

Bits Name Type Reset Value Description

23:16 IREGION R 0  Number of instruction regions supported by this MPU; 
because ARM v7-M architecture uses a unifi ed MPU, this is 
always 0

15:8 DREGION R 0 or 8  Number of regions supported by this MPU; in the Cortex-M3 
this is either 0 (MPU not present) or 8 (MPU present)

0 SEPARATE R 0 This is always 0 as the MPU is unifi ed

The MPU Type register can be used to determine whether the MPU is fi tted. If the DREGION 
fi eld is read as 0, the MPU is not implemented (see Table 13.2).

Table 13.2 MPU Control Register (0xE000ED94)

Bits Name Type Reset Value Description
2 PRIVDEFENA R/W 0  Privileged default memory map enable. When set to 1 and 

if the MPU is enabled, the default memory map will be used 
for privileged accesses as a background region. If this bit is 
not set, the background region is disabled and any access 
not covered by any enabled region will cause a fault.

1 HFNMIENA R/W 0  If set to 1, it enables the MPU during the hard fault handler 
and NMI handler; otherwise, the MPU is not enabled for the 
hard fault handler and NMI.

0 ENABLE R/W 0 Enables the MPU if set to 1.

By using PRIVDEFENA and if no other regions are set up, privileged programs will be able to 
access all memory locations, and only user programs will be blocked. However, if other MPU 
regions are programmed and enabled, they can override the background region. For example, 
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for two systems with similar region setups but only one with PRIVDEFENA set to 1 (the 
right-hand side in Figure 13.1), the one with PRIVDEFENA set to 1 will allow privileged 
access to background regions.

Region 0

Region 1

Region 2

Region 3

PRIVDEFENA � 0 PRIVDEFENA � 1

0

4 Gb

Region 0
permission

Region 1
permission

Region 1
permission

Region 2
permission

Region 2
permission

Region 0
permission

Access not
allowed

Region 3
permission

override
Region 2

Access not
allowed

0

4 Gb

Privileged
access

only

Region 3
permission

override
Region 2

Privileged
accesses

only
Region -1

Region -1

Region 3

Region 2

Region 1

Region 0

Figure 13.1 The Effect of PRIVDEFENA

Setting the enable bit in the MPU Control register is usually the last step in the MPU setup 
code. Otherwise the MPU might generate faults by accident before the region confi guration is 
done. In some situations, it might be worth clearing the MPU Enable at the start of the MPU 
confi guration routine to make sure that the MPU faults won’t be triggered by accident during 
setup of MPU regions.

Table 13.3 MPU Region Number Register (0xE000ED98)

Bits Name Type Reset Value Description
7:0 REGION R/W —  Select the region that is being programmed. Since eight 

regions are supported in the Cortex-M3 MPU, only bit[2:0] 
of this register is implemented.

Before each region is set up, write to this register to select the region to be programmed (see 
Table 13.3).
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Using the VALID and REGION fi elds in the MPU Region Base Address register (see Table 13.4), 
we can skip the step of programming the MPU Region Number register. This might reduce the 
complexity of the program code, especially if the whole MPU setup is defi ned in a lookup table.

Table 13.4 MPU Region Base Address Register (0xE000ED9C)

Bits Name Type Reset Value  Description
31:N ADDR R/W —  Base address of the region; N is dependent on the region 

size—for example, a 64 k size region will have a base address 
fi eld of [31:16].

4 VALID R/W —  If this is 1, the REGION defi ned in bit[3:0] will be used in 
this programming step; otherwise, the region selected by the 
MPU Region Number register is used.

3:0 REGION R/W —  This fi eld overrides the MPU Region Number register if VALID 
is 1; otherwise it is ignored. Since eight regions are supported 
in the Cortex-M3 MPU, the region number override is 
ignored if the value of the REGION fi eld is larger than 7.

Table 13.5 MPU Region Base Attribute and Size Register (0xE000EDA0)

Bits Name Type Reset Value Description
31:29 Reserved — — —

28 XN R/W —  Instruction Access Disable (1 � Disable instruction fetch 
from this region; an attempt to do so will result in a memory 
management fault)

27 Reserved — — —

26:24 AP R/W — Data Access Permission fi eld

23:22 Reserved — — —

21:19 TEX R/W — Type Extension fi eld

18 S R/W — Shareable

17 C R/W — Cacheable

16 B R/W — Bufferable

15:8 SRD R/W — Subregion disable

7:6 Reserved — — 

5:1 REGION SIZE R/W — MPU Protection Region size

0 SZENABLE R/W — Region enable

We also need to defi ne the memory address and properties of each region. This is controlled 
by the MPU Region Base Attribute and Size register (see Table 13.5).

The REGION SIZE fi eld (5-bit) in the MPU Region Base Attribute and Size register 
determines the size of the region (see Table 13.6).
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Table 13.6 Encoding of REGION Field for Different 
Memory Region Sizes

REGION Size Size
b00000 Reserved

b00001 Reserved

b00010 Reserved

b00011 Reserved

b00100 32 Byte

b00101 64 Byte

b00110 128 Byte

b00111 256 Byte

b01000 512 Byte

b01001 1 KB

b01010 2 KB

b01011 4 KB

b01100 8 KB

b01101 16 KB

b01110 32 KB

b01111 64 KB

REGION Size Size
b10000 128 KB

b10001 256 KB

b10010 512 KB

b10011 1 MB

b10100 2 MB

b10101 4 MB

b10110 8 MB

b10111 16 MB

b11000 32 MB

b11001 64 MB

b11010 128 MB

b11011 256 MB

b11100 512 MB

b11101 1 GB

b11110 2 GB

b11111 4 GB

The subregion disable fi eld (bit [15:8] of the MPU Region Base Attribute and Size register) is 
used to divide a region into eight equally sized subregions and defi ne each of them as enable 
or disable. If a subregion is disabled and it was overlapped with another region, the access 
rules for the other region are applied. If the subregion is disabled and it does not overlap 
any other region, access to this memory range will result in a memory management fault. 
Subregions cannot be used if the region size is 128 bytes or less.

The Data Access Permission (AP) fi eld (bit[26:24]) defi nes the access permission of the 
region (see Table 13.7).

Table 13.7 Encoding of AP Field for Various Access Permission Confi gurations

AP Value Privileged Access User Access Description
000 No access No access No access

001 Read/Write No access Privileged access only

010 Read/Write Read only Write in a user program generates a fault

011 Read/Write Read/Write Full access

100 Unpredictable Unpredictable Unpredictable

101 Read only No access Privileged read only

110 Read only Read only Read only

111 Read only Read only Read only
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The XN (Execute Never) fi eld (bit [28]) decides whether an instruction fetch from this region 
is allowed. When this fi eld is set to 1, all instructions fetched from this region will generate a 
memory management fault when they enter the execution stage.

The TEX, S, B, and C fi elds (bit [21:16]) are more complex. Despite the fact that the Cortex-
M3 processor does not have cache, its implementation follows ARM v7-M architecture, which 
can support external cache and more advanced memory systems. Therefore, the region access 
properties can be programmed to support different types of memory management models.

In v6 and v7 architecture, the memory system can have two cache levels: inner cache and 
outer cache. They can have different caching policies. Since the Cortex-M3 processor itself 
does not have a cache controller, the cache policy only affects write buffering in the internal 
bus matrix and possibly the memory controller (see Table 13.8).

Table 13.8 [S] Indicates That Shareability Is Determined by the S Bit Field 
(Shared by Multiple Processors)

TEX C B Description Region 
    Shareability
b000 0 0 Strongly ordered (transfers carry out and complete in programmed order) Shareable

b000 0 1 Shared device (write can be buffered) Shareable

b000 1 0 Outer and inner write-through; no write allocate [S]

b000 1 1 Outer and inner write-back; no write allocate [S]

b001 0 0 Outer and inner non-cacheable [S]

b001 0 1 Reserved Reserved

b001 1 0 Implementation defi ned —

b001 1 1 Outer and inner write-back; write and read allocate [S]

b010 0 0 Nonshared device Not shared

b010 0 1 Reserved Reserved

b010 1 X Reserved Reserved

b1BB A A Cached memory; BB � outer policy, AA � inner policy [S]

When TEX[2] is 1, the cache policy for outer cache and inner cache are as shown in Table 13.9.

Table 13.9 Encoding of Inner and Outer Cache Policy When Most Signifi cant Bit 
of TEX is Set to 1

Memory Attribute Encoding (AA and BB) Cache Policy
00 Noncacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate
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For more information on cache behavior and cache policy, refer to the ARM Architecture 
Application Level Reference Manual (Ref 2).

Setting Up the MPU

The MPU register might look complicated, but as long as you have a clear idea of the memory 
regions that are required for your application, it should not be diffi cult. Typically, you will 
need to have the following memory regions:

• Program code for privileged programs (for example, OS kernel and exception handlers)

• Program code for user programs

• Data memory for privileged programs within Code region (data � stack)

• Data memory for user programs within Code region (data � stack)

• Data memory for privileged and user programs in other memory regions (e.g., SRAM)

• System device region (usually privileged access only; for example, NVIC and MPU 
registers)

• Other peripherals

For Cortex-M3 products, most memory regions can be set up with TEX � b000, C � 1, B � 
1. System devices such as the NVIC should be strongly ordered, and peripheral regions can 
be programmed as shared devices (TEX�b000, C� 0, B � 1). However, if you want to make 
sure that any bus faults occurring in the region are precise bus faults, you should use strong 
ordering (TEX � b000, C � 0, B � 0) so that write buffering is disabled. However, doing so 
can reduce system performance.

A simple fl ow for an MPU setup routine might look like the diagram shown in Figure 13.2.

Before the MPU is enabled and if the vector table is relocated to RAM, remember to set up 
the fault handler for the memory management fault in the vector table, and enable the memory 
management fault in the System Handler Control and State register. They are needed to allow 
the memory management fault handler to be executed if an MPU violation takes place.

For a simple case of only four required regions, a simple MPU setup code (without the region 
checking and enabling) might look like this:

      LDR    R0,=0xE000ED98 ; Region number register
      MOV    R1,#0          ; Select region 0
      STR    R1, [R0]
      LDR    R1,=0x00000000 ; Base Address = 0x00000000
      STR    R1, [R0, #4]   ; MPU Region Base Address Register
      LDR    R1,=0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
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      STR    R1, [R0, #8]   ; MPU Region Attribute and Size Register
      MOV    R1,#1          ; Select region 1
      STR    R1, [R0]
      LDR    R1,=0x08000000 ; Base Address = 0x08000000
      STR    R1, [R0, #4]   ; MPU Region Base Address Register
      LDR    R1,=0x0307002B ; R/W, TEX=0,S=1,C=1,B=1, 4MB, Enable=1
      STR    R1, [R0, #8]   ; MPU Region Attribute and Size Register
      MOV    R1,#2          ; Select region 2
      STR    R1, [R0]

Check MPU type
register to see if MPU
exists and there are

enough regions

Error
No

Yes

Disable MPU

Select Region #0

Program region
base address

and configuration

Select Region #1

Program region
base address

and configuration

Select Region #N

Program region
base address

and configuration

Setup for other
regions

Enable MPU

MPU setup
completed

Region selection and
programming of region

registers can be
combined in one step

Figure 13.2 Example Steps to Set Up the MPU
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      LDR    R1,=0x40000000 ; Base Address = 0x40000000
      STR    R1, [R0, #4]   ; MPU Region Base Address Register
      LDR    R1,=0x03050039 ; R/W, TEX=0,S=1,C=0,B=1, 512MB, Enable=1
      STR    R1, [R0, #8]   ; MPU Region Attribute and Size Register
      MOV    R1,#3          ; Select region 3
      STR    R1, [R0]
      LDR    R1,=0xE0000000 ; Base Address = 0xE0000000
      STR    R1, [R0, #4]   ; MPU Region Base Address Register
      LDR    R1,=0x03040027 ; R/W, TEX=0,S=1,C=0,B=0, 1MB, Enable=1
      STR    R1, [R0, #8]   ; MPU Region Attribute and Size Register
      MOV    R1,#1          ; Enable MPU
      STR    R1, [R0,#-4]    ; MPU Control register 

; (0xE000ED98-4=0xE000ED94)

This provides four regions:

• Privileged code: 0x00000000–0x00FFFFFF (16 MB), full access, cacheable

• Privileged data: 0x08000000–0x0803FFFF (4 MB), full access, cacheable

• Peripheral: 0x40000000–0x5FFFFFFF (0.5 GB), full access, shared device

• System control: 0xE0000000–0xE00FFFFF (1 MB), privileged access, strongly 
ordered, XN

By combining region selection and writing to the base address register, we can shorten the 
code to this:

      LDR    R0,=0xE000ED9C ; Region Base Address register
      LDR    R1,=0x00000010  ; Base Address = 0x00000000, region 0, 

; valid=1
      STR    R1, [R0, #0]   ; MPU Region Base Address Register
      LDR    R1,=0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
      STR    R1, [R0, #4]   ; MPU Region Attribute and Size Register
      LDR    R1,=0x08000011  ; Base Address = 0x08000000, region 1, 

; valid=1
      STR    R1, [R0, #0]   ; MPU Region Base Address Register
      LDR    R1,=0x0307002B ; R/W, TEX=0,S=1,C=1,B=1, 4MB, Enable=1
      STR    R1, [R0, #4]   ; MPU Region Attribute and Size Register
      LDR    R1,=0x40000012  ; Base Address = 0x40000000, region 2, 

; valid=1
      STR    R1, [R0, #0]   ; MPU Region Base Address Register
      LDR    R1,=0x03050039 ; R/W, TEX=0,S=1,C=0,B=1, 512MB, Enable=1
      STR    R1, [R0, #4]   ; MPU Region Attribute and Size Register
      LDR    R1,=0xE0000013  ; Base Address = 0xE0000000, region 3, 

; valid=1
      STR    R1, [R0, #0]   ; MPU Region Base Address Register
      LDR    R1,=0x03040027 ; R/W, TEX=0,S=1,C=0,B=0, 1MB, Enable=1
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      STR    R1, [R0, #4]   ; MPU Region Attribute and Size Register
      MOV    R1,#1          ; Enable MPU
      STR    R1, [R0,#-8]    ; MPU Control register

; (0xE000ED9C-8=0xE000ED94)

We’ve shortened the code quite a bit. However, you can make further enhancements to create 
even faster setup code. This is done using MPU aliased register addresses (see Table D.33 
in Appendix D). The aliased register addresses follow the MPU Region Attribute and Size 
registers and are aliased to the MPU Base Address register and the MPU Region Attribute and 
Size register. They produce a continuous address of 8 words, making it possible to use load/
store multiple (LDM and STM) instructions:

      LDR    R0,=0xE000ED9C   ; Region Base Address register
      LDR    R1,=MPUconfi g  ; Table of predefi ned MPU setup variables
      LDMIA  R1!, {R2, R3, R4, R5}  ; Read 4 words from table
      STMIA  R0!, {R2, R3, R4, R5}  ; write 4 words to MPU
      LDMIA  R1!, {R2, R3, R4, R5}  ; Read next 4 words from table
      STMIA  R0!, {R2, R3, R4, R5}  ; write next 4 words to MPU
      B      MPUconfi gEnd
      ALIGN  4     ; This is needed to make sure the following table 

; is word aligned
MPUconfi g          ; so that we can use load multiple instruction
      DCD     0x00000010  ; Base Address = 0x00000000, region 0, 

; valid=1
      DCD     0x0307002F ; R/W, TEX=0,S=1,C=1,B=1, 16MB, Enable=1
      DCD     0x08000011  ; Base Address = 0x08000000, region 1, 

; valid=1
      DCD     0x0307002B ; R/W, TEX=0,S=1,C=1,B=1, 4MB, Enable=1
      DCD     0x40000012  ; Base Address = 0x40000000, region 2, 

; valid=1
      DCD     0x03050039 ; R/W, TEX=0,S=1,C=0,B=1, 512MB, Enable=1
      DCD     0xE0000013  ; Base Address = 0xE0000000, region 3, 

; valid=1
      DCD     0x03040027 ;  R/W, TEX=0,S=1,C=0,B=0, 1MB, Enable=1
MPUconfi gEnd
      LDR    R0,=0xE000ED94 ; MPU Control register
      MOV    R1,#1          ; Enable MPU
      STR    R1, [R0]

This solution, of course, can be used only if all the required information is known beforehand. 
Otherwise, a more generic approach has to be used. One way to handle this is to use a 
subroutine (MpuRegionSetup) that can set up a region based on a number of input parameters 
and then call it several times to set up different regions:

MpuSetup   ; A subroutine to setup the MPU by calling subroutines that 
; setup regions

      PUSH  {R0-R6,LR}
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      LDR   R0,=0xE000ED94 ; MPU Control Register
      MOV   R1,#0
      STR   R1,[R0]        ; Disable MPU
      ; --- Region #0 ---
      LDR   R0,=0x00000000 ; Region 0: Base Address  = 0x00000000
      MOV   R1,#0x0        ; Region 0: Region number = 0
      MOV   R2,#0x17       ; Region 0: Size          = 0x17 (16MB)
      MOV   R3,#0x3        ;  Region 0: AP            = 0x3 ( full 

access)
      MOV   R4,#0x7        ; Region 0: MemAttrib     = 0x7
      MOV   R5,#0x0        ; Region 0: Sub R disable = 0
      MOV   R6,#0x1        ; Region 0: {XN, Enable}  = 0,1
      BL    MpuRegionSetup
      ; --- Region #1 ---
      LDR   R0,=0x08000000 ; Region 1: Base Address  = 0x08000000
      MOV   R1,#0x1        ; Region 1: Region number = 1
      MOV   R2,#0x15       ; Region 1: Size          = 0x15 (4MB)
      MOV   R3,#0x3        ;  Region 1: AP            = 0x3 ( full 

access)
      MOV   R4,#0x7        ; Region 1: MemAttrib     = 0x7
      MOV   R5,#0x0        ; Region 1: Sub R disable = 0
      MOV   R6,#0x1        ; Region 1: {XN, Enable}  = 0,1
      BL    MpuRegionSetup
      ...                  ; setup for region #2 and #3
      ; --- Region #4-#7 Disable ---
      MOV   R0,#4
      BL    MpuRegionDisable
      MOV   R0,#5
      BL    MpuRegionDisable
      MOV   R0,#6
      BL    MpuRegionDisable
      MOV   R0,#7
      BL    MpuRegionDisable
      LDR   R0,=0xE000ED94 ; MPU Control Register
      MOV   R1,#1
      STR   R1,[R0]        ; Enable MPU
      POP  {R0-R6,PC}      ; Return

MpuRegionSetup
      ; MPU region setup subroutine
      ; Input R0 : Base Address
      ;       R1 : Region number
      ;       R2 : Size
      ;       R3 : AP (access permission)
      ;       R4 : MemAttrib ({TEX[2:0], S, C, B})
      ;       R5 : Sub region disable
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      ;       R6 : {XN,Enable}  
      PUSH  {R0-R1, LR}
      BIC   R0, R0, #0x1F   ; Clear unused bits in address
      BFI   R0, R1, #0, #4  ; Insert region number to R0[3:0]
      ORR   R0, R0, #0x10   ; Set valid bit
      LDR   R1,=0xE000ED9C  ; MPU Region Base Address Register
      STR   R0,[R1]         ; Set base address reg

      AND   R0, R6, #0x01   ; Get Enable bit
      UBFX  R1, R6, #1, #1  ; Get XN bit
      BFI   R0, R1, #28, #1 ; Insert XN to R0[28]
      BFI   R0, R2, #1 , #5  ; Insert Region Size fi eld (R2[4:0]) to 

; R0[5:1]
      BFI   R0, R3, #24, #3 ; Insert AP fi elds (R3[2:0]) to R0[26:24]
      BFI   R0, R4, #16, #6  ; Insert memattrib fi eld (R4[5:0]) to 

; R0[21:16]
      BFI   R0, R5, #8,  #8  ; Insert subregion disable (SRD) fi elds to 

; R0[15:8]
      LDR   R1,=0xE000EDA0   ; MPU Region Base Size and Attribute 

; Register
      STR   R0,[R1]         ; Set base attribute and size reg
      POP   {R0-R1, PC}     ; Return

MpuRegionDisable
      ; Subroutine to disable unused region
      ; Input R0 : Region number
      PUSH  {R1, LR}      
      AND   R0, R0, #0xF    ; Clear unused bits in Region Number
      ORR   R0, R0, #0x10   ; Set valid bit
      LDR   R1,=0xE000ED9C  ; MPU Region Base Address Register
      STR   R0,[R1]
      MOV   R0, #0
      LDR   R1,=0xE000EDA0   ; MPU Region Base Size and Attribute 

; Register
      STR   R0,[R1]          ; Set base attribute and size reg to 0 

; (disabled)
      POP   {R1, PC}        ; Return

In this example, we included a subroutine that is used to disable a region that is not used. 
This is necessary if you do not know whether a region has been programmed previously. If 
an unused region is previously programmed to be enabled, it needs to be disabled so that it 
doesn’t affect the new confi guration.

In addition, the example shows the application of the Bit Field Insert (BFI) instruction in the 
Cortex-M3. This can greatly simplify bit-fi eld merging operations.
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Typical Setup

In typical applications, the MPU is used when there is a need to prevent user programs from 
accessing privileged process data and program regions. When developing the setup routine for 
the MPU, you need to consider a number of regions:

1. Code region:

 • Privileged code, including a starting vector table

 • User code

2. SRAM region:

 • Privileged data, including the main stack

 • User data, including the process stack

 • Privileged bit-band alias region

 • User bit-band alias region

3. Peripherals:

 • Privileged peripherals

 • User peripherals

 • Privileged peripheral bit-band alias region

 • User peripheral bit-band alias region

4. System Control Space (NVIC and debug components):

 • Privileged accesses only

From this list we have identifi ed 11 regions, more than the eight regions supported by the 
Cortex-M3 MPU. However, we can defi ne the privileged regions by means of a background 
region (PRIVDEFENA set to 1), so there are only fi ve user regions to set up, leaving three 
spare MPU regions. The unused regions might still be used for setting up additional regions in 
external memory, to protect read-only data, or to completely block some part of the memory if 
necessary.

Example Use of the Subregion Disable

In some cases we might have some peripherals accessible by user programs, and a few 
should be protected to be privileged accesses only, resulting in fragmentation of 
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user-accessible peripheral memory space. In this kind of scenario, we could do one of these 
things:

• Defi ne multiple user regions

• Defi ne privileged regions inside the user peripheral region

• Use subregion disable within the user region

The fi rst two methods can use up available regions very easily. With the third solution, using 
the subregion disable feature, we can easily set up access permission to separate peripheral 
blocks without using extra regions. For example:

Memory
Space

Device #7
(User Accessible)

Device #6
(Privileged Only)

Device #5
(Privileged Only)

Device #4
(User Accessible)

Device #3
(User Accessible)

Device #2
(Privileged Only)

Device #1
(User Accessible)

Device #0
(User Accessible)

Subregion
disable

0

1

1

0

0

1

0

0

User

User

User

User

User

Background
Privileged Region

Foreground User Region
with subregion disable
set to 0x64 (01100100)

Privileged

Privileged

Privileged

Figure 13.3 Using Subregion Disable to Control Access Rights to Separated Peripherals

The same techniques can be applied to memory regions as well. However, it is more likely 
that peripherals will have a fragmented privilege setup.

Let’s assume that the memory regions in Table 13.10 will be used. After the required regions 
are defi ned, we can create the MPU setup code. To make the code easier to understand 
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and modify, we used the function we created earlier to develop the completed MPU setup 
example:

MpuSetup   ; A subroutine to setup the MPU by calling subroutines that 
; setup regions

      PUSH  {R0-R6,LR}
      LDR   R0,=0xE000ED94 ; MPU Control Register
      MOV   R1,#0
      STR   R1,[R0]        ; Disable MPU
      ; --- Region #0 ---    User program
      LDR   R0,=0x00004000 ; Region 0: Base Address  = 0x00004000
      MOV   R1,#0x0        ; Region 0: Region number = 0
      MOV   R2,#0x0D       ; Region 0: Size          = 0x0D (16KB)
      MOV   R3,#0x3        ;  Region 0: AP            = 0x3 ( full 

access)
      MOV   R4,#0x2        ;  Region 0: MemAttrib     = 0x2 ( TEX=0, 

S=0, C=1, 
B=0)

      MOV   R5,#0x0        ; Region 0: Sub R disable = 0
      MOV   R6,#0x1        ; Region 0: {XN, Enable}  = 0,1
      BL    MpuRegionSetup
      ; --- Region #1 ---    User data
      LDR   R0,=0x20000000 ; Region 1: Base Address  = 0x20000000
      MOV   R1,#0x1        ; Region 1: Region number = 1
      MOV   R2,#0x0B       ; Region 1: Size          = 0x0B (4KB)
      MOV   R3,#0x3        ;  Region 1: AP            = 0x3 ( full 

access)
      MOV   R4,#0xB        ;  Region 1: MemAttrib     = 0xB ( TEX=1, 

S=0, C=1, 
B=1)

      MOV   R5,#0x0        ; Region 1: Sub R disable = 0
      MOV   R6,#0x1        ; Region 1: {XN, Enable}  = 0,1
      BL    MpuRegionSetup
      ; --- Region #2 ---    User bit band
      LDR   R0,=0x22000000 ; Region 2: Base Address  = 0x22000000
      MOV   R1,#0x2        ; Region 2: Region number = 2
      MOV   R2,#0x10       ; Region 2: Size          = 0x10 (128KB)
      MOV   R3,#0x3        ;  Region 2: AP            = 0x3 ( full 

access)
      MOV   R4,#0xB        ;  Region 2: MemAttrib     = 0xB ( TEX=1, 

S=0, C=1, 
B=1)

      MOV   R5,#0x0        ; Region 2: Sub R disable = 0
      MOV   R6,#0x1        ; Region 2: {XN, Enable}  = 0,1
      BL    MpuRegionSetup
      ; --- Region #3 ---    User Peripherals
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      LDR   R0,=0x40000000 ; Region 3: Base Address  = 0x40000000
      MOV   R1,#0x3        ; Region 3: Region number = 3
      MOV   R2,#0x13       ; Region 3: Size          = 0x13 (1MB)
      MOV   R3,#0x3        ;  Region 3: AP            = 0x3 ( full 

access)
      MOV   R4,#0x1        ;  Region 3: MemAttrib     = 0x1 ( TEX=0, 

S=0, C=0, B=1)
      MOV   R5,#0x9B       ;  Region 3: Sub R disable = 0x9B ( from 

previous 
example)

      MOV   R6,#0x3        ;  Region 3: {XN, Enable}  = 1,1
      BL    MpuRegionSetup
      ; --- Region #4 ---    User peripheral bit band
      LDR   R0,=0x42000000 ; Region 4: Base Address  = 0x42000000
      MOV   R1,#0x4        ; Region 4: Region number = 4
      MOV   R2,#0x18       ; Region 4: Size          = 0x18 (32MB)
      MOV   R3,#0x3        ;  Region 4: AP            = 0x3 ( full 

access)
      MOV   R4,#0x1        ;  Region 4: MemAttrib     = 0x1 ( TEX=0, 

S=0, C=0, 
B=1)

      MOV   R5,#0x9B       ;  Region 4: Sub R disable = 0x64 ( from 
previous 
example)

      MOV   R6,#0x3        ; Region 4: {XN, Enable}  = 1,1
      BL    MpuRegionSetup
      ; --- Region #5 ---    External RAM
      LDR   R0,=0x60000000 ; Region 5: Base Address  = 0x60000000
      MOV   R1,#0x5        ; Region 5: Region number = 5
      MOV   R2,#0x17       ; Region 5: Size          = 0x17 (16MB)
      MOV   R3,#0x3        ;  Region 5: AP            = 0x3 ( full 

access)
      MOV   R4,#0xB        ;  Region 5: MemAttrib     = 0xB ( TEX=0, 

S=0, C=1, B=1)
      MOV   R5,#0x0        ; Region 5: Sub R disable = 0
      MOV   R6,#0x1        ; Region 5: {XN, Enable}  = 0,1
      BL    MpuRegionSetup
      ; --- Region #6 ---    Not used, make sure it is disabled
      MOV   R0,#6
      BL    MpuRegionDisable
      ; --- Region #7 ---    Not used, make sure it is disabled
      MOV   R0,#7
      BL    MpuRegionDisable
      LDR   R0,=0xE000ED94 ; MPU Control Register
      MOV   R1,#5
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Table 13.10 Memory Region Arrangement for MPU Setup Example Code

Address Description Size Type Memory  
    Attributes 
    (C, B, A, S, XN) MPU Region
0x00000000– Privileged program 16 k Read only C, –, A, –, – Background
0x00003FFF

0x00004000– User program 16 k Read only C, –, A, –, – Region #0
0x00007FFF

0x20000000– User data 4 k Full access C, B, A, –, – Region #1
0x20000FFF

0x20001000– Privileged data 4 k Privileged  C, B, A, –, – Background
0x20001FFF   accesses

0x22000000– User data bit-band  128 k Full access C, B, A, –, – Region #2
0x2201FFFF alias

0x22020000– Privileged data  128 k Full access C, B, A, –, – Background
0x2203FFFF bit-band alias

0x40000000– User peripherals 1 M Full access –, B, –, –, XN Region #3
0x400FFFFF

0x40040000– Privileged peripherals  128 k Privileged –, B, –, –, XN Disabled subregions in
0x4005FFFF within user peripheral   accesses  Region #3
 region

0x42000000– User peripherals  32 M Full access –, B, –, –, XN Region #4
0x43FFFFFF bit-band alias

0x42800000– Privileged peripherals  4 M Privileged –, B, –, –, XN Disabled subregion in
0x42BFFFFF bit-band alias within   accesses  Region #4
 user region

0x60000000– External RAM 16 M Full access C, B, A, –, – Region #5
0x60FFFFFF

0xE0000000 – NVIC, debug, and  1 M Privileged –, –, –, –, XN Background
0xF00FFFFF Private Peripheral Bus  accesses

      STR   R1,[R0]         ; Enable MPU with Privileged Default 
; memory map enabled

      POP   {R0-R6,PC}
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Other Cortex-M3 Features
CHAPTER 14

In This Chapter:

● The SYSTICK Timer
● Power Management
● Multiprocessor Communication
● Self-Reset Control

The SYSTICK Timer

The SYSTICK register in the NVIC was covered briefl y in Chapter 8. As we saw, the 
SYSTICK timer is a 24-bit down counter. Once it reaches zero, the counter loads the reload 
value from the RELOAD register. It does not stop until the enable bit in the SYSTICK Control 
and Status register is cleared.

0xE000E010  Control and Status

0xE000E014  Reload Value

0xE000E018  Current Value

0xE000E01C  Calibration

Enable

TICKINT

CLKSOURCE
COUNTFLAG

RELOAD

CURRENT

TENMS

NOREF SKEW

16 02331

Figure 14.1 SYSTICK Registers in the NVIC
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The Cortex-M3 processor allows two different clock sources for the SYSTICK counter. The 
fi rst one is the core free-running clock (not from the system clock HCLK, so it does not stop 
when the system clock is stopped). The second one is an external reference clock. This clock 
signal must be at least two times slower than the free-running clock because this signal is 
sampled by the free-running clock. Because a chip designer might decide to omit this external 
reference clock in the design, it might not be available. To determine whether the external 
clock source is available, you should check bit[31] of the SYSTICK Calibration register. The 
chip designer should connect this pin to an appropriate value base on the design.

When the SYSTICK timer changes from 1 to 0, it will set the COUNTFLAG bit in the SYSTICK 
Control and Status register. The COUNTFLAG can be cleared by one of the following:

• Read of the SYSTICK Control and Status register by the processor

• Clear of the SYSTICK counter value by writing any value to the SYSTICK Current 
Value register

The SYSTICK counter can be used to generate SYSTICK exceptions at regular intervals. This is 
often necessary for the OS, for task and resources management. To enable SYSTICK exception 
generation, the TICKINT bit should be set. In addition, if the vector table has been relocated to 
SRAM, it would be necessary to set up the SYSTICK exception handler in the vector table:

      ; Setup SYSTICK exception handler
      MOV       R0,#0xF           ; Exception type 15
      LDR       R1,�systick_handler ; address of exception handler
      LDR       R2,�0xE000ED08    ; Vector table offset register
      LDR       R2,[R2]
      STR       R1, [R2, R0, LSL #2]   ; Write vector to

; VectTblOffset�ExcpType*4

A simple code to set up the SYSTICK could be:

    ; Enable SYSTICK timer operation and enable SYSTICK interrupt
    LDR    R0,=0xE000E010   ; SYSTICK control and status register
    MOV    R1, #0
    STR    R1, [R0]          ; Stop counter to prevent interrupt 

; triggered accidentally
    LDR    R1,=0x3FF         ; Trigger every 1024 cycles (since 

; counter decrement from
                             ; 1023 to 0,total of 1024 cycles, the 

; value 0x3FF is used).
    STR    R1, [R0,#4]       ; Write reload value to reload register 

; address
    STR    R1, [R0,#8]       ; Write any value to current value 

; register to clear
                            ; current value to 0 and clear COUNTFLAG
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    MOV    R1, #0x7          ; Clock source = core clock, Enable 
; Interrupt, Enable

                            ; SYSTICK counter
    STR    R1, [R0]         ; Start counter

The SYSTICK counter provides a simple way to allow timing calibration information to be 
accessed. The top level of the Cortex-M3 processor has a 24-bit input to which a chip 
designer can input a reload value that can be used to generate a 10 ms time interval. This 
value can be accessed by the SYSTICK calibration register. However, this option is not 
necessarily available, so you’ll need to check the device’s datasheet to see if you can use this 
feature.

The SYSTICK counter can also be used as an alarm timer that starts a certain task after 
a number of clock cycles. For example, if a task has to be started to execute after 300 
clock cycles, we could set up the task at the SYSTICK exception handler and program the 
SYSTICK timer so that the task will be executed when the 300 cycle count is reached:

 LDR r0,=15           ; Setup SYSTICK handler
 LDR r1,=SysTickAlarm ; SYSTICK Exception handler name
 BL SetupExcpHandler

 LDR R0,=0xE000E010   ; SYSTICK base
 MOV R1, #0           ; Disable SYSTICK during programming
 STR R1, [R0]
 STR R1, [R0,#0x8]    ; Clear current value
 LDR R1, =(300-12)     ; Set Reload value : Minus 12 because of 

; exception latency
 STR R1,[R0,#0x4]

 LDR R4,=SysTickFired ; A data variable in RAM
 MOV R5, #0           ; Setup the software fl ag to zero
 STR R5, [R4]
 MOV R1, #0x7          ; Use internal clock, enable SYSTICK 

; exception,
 STR R1, [R0]         ; Start counting

 LDR R4,=SysTickFired

WaitLoop
 LDR R5, [R4]   ; Wait until Software fl ag is set by SYSTICK 

; handler
 CMP R5, #0
 BEQ WaitLoop
 ...                     ; SysTickFired set, main program 

; continue on other tasks
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The example code on the  last page uses a subroutine called SetupExcpHandler to set the 
SYSTICK vector. This is used only when the vector table is writable (for example, relocated 
to SRAM):

SetupExcpHandler     ; Subroutine for setting exception vector
 ; Input R0 : Exception number
 ;       R1 : Exception vector
 PUSH  {R2, LR}
 LDR   R2,�0xE000ED08   ; Vector Table offset
 LDR   R2, [R2]   
 STR   R1, [R2, R0, LSL #2]  ; Address � vector table offset � 4 

; x Exception number
 POP   {R2, PC}

The counter starts with an initial value of zero because it was manually cleared from the 
main program. It then immediately reloads to 288 (300 – 12). We subtract 12 from the count 
because this is the number of clock cycles for minimum exception latency. However, if 
another exception with the same or a higher priority is running when the SYSTICK counter 
reaches zero, the start of the exception could be delayed.

Note that the subtraction of 12 cycles from the reload value in this example is required for 
only one-shot alarm timer usage. For periodic counting usage, the reload value should be the 
number of clock cycles per period minus one.

Since the SYSTICK counter does not stop automatically, we need to stop it within the 
SYSTICK handler. Furthermore, there’s a chance that the SYSTICK exception could have 
been pended again if it was delayed by processing of other exceptions, so a number of steps 
must be carried out if the SYSTICK exception is a one-off processing:

SysTickAlarm                  ; SYSTICK exception handler
 PUSH {LR}
 LDR R0,�0xE000E010    ; SYSTICK base
 MOV R1, #0
 STR R1,[R0]           ; Disable further SYSTICK exception
 LDR R0,�0xE000ED04
 LDR R1,�0x02000000     ; Clear SYSTICK pend bit in case it has 

; been pended again
 STR R1, [R0]    
 ...                     ; Execute required processing task
 LDR  R2,�SysTickFired   ; Setup software fl ag so that main 

; program knows tasks
 LDR R1, [R2]          ; has been carried out.
 ADD R1, #1
 STR R1, [R2]
 POP {PC}  ; Exception return

In the fi nal step of the SYSTICK exception handler, we set a software variable called 
SysTickFired so that the main program knows the required task has been carried out.
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Power Management

The Cortex-M3 provides sleep modes as a power management feature. During sleep mode, the 
system clock can be stopped, but the free-running clock input should still be running to allow 
the processor to be woken by an interrupt. The two sleep modes are:

• Sleep: Indicated by the SLEEPING signal from the Cortex-M3 processor

• Deep sleep: Indicated by the SLEEPDEEP signal from the Cortex-M3 processor

To decide which sleep mode will be used, the NVIC System Control register has a bit fi eld 
called SLEEPDEEP (see Table 14.1). The actions of SLEEPING and SLEEPDEEP depend on 
the particular MCU implementation. In some implementations, the action will be the same in 
both cases.

Table 14.1 System Control Register (0xE000ED10)

Bits Name Type Reset Value Description
4 SEVONPEND R/W 0  Send Event on Pending; wakes up from WFE if a 

new interrupt is pended, regardless of whether the 
interrupt has priority higher than the current level

3 Reserved – – –

2 SLEEPDEEP R/W 0  Enable SLEEPDEEP output signal when entering sleep 
mode

1 SLEEPONEXIT R/W 0 Enable SleeponExit feature

0 Reserved – – –

The sleep modes are invoked by WFI or WFE instructions. WFI stands for Wait-For-Interrupt, 
and WFE stands for Wait-For-Events. Events can be interrupts, a previously triggered 
interrupt, or an external event signal pulse via the RXEV signal. Inside the processor there is a 
latch for events, so a past event can wake up a processor from WFE.

WFI WFE

Event latch � 1?

Clear event latch
and continue to
next instruction

Yes
No

SLEEPDEEP � 1?

YesNo

Enter sleep (both
SLEEPING and
SLEEPDEEP
signals high)

Enter sleep
(SLEEPING signal
high, SLEEPDEEP

signal low)

Clear event latch

Figure 14.2 Sleep Operations
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What exactly happens when the processor enters sleep mode depends on the chip design. The 
common case is that some of the clock signals can be stopped to reduce power consumption. 
However, the chip can also be designed to shut down part of the chip to further reduce power, 
or it is also possible that a design can shut down the chip completely and all the clock signals 
will be stopped. In a case where the chip is shut down completely, the only way to wake the 
system from sleep is via a system reset.

To wake the processor from WFI sleep, the interrupt will have to be higher priority than 
the current priority level (if it is an executing interrupt) and higher than the level set by the 
BASEPRI register or mask registers (PRIMASK and FAULTMASK). If an interrupt is not 
going to be accepted due to priority level, it will not wake up a sleep caused by WFI.

The situation for WFE is slightly different. If the interrupt triggered during sleep has lower or 
equal priority than the mask registers or BASEPRI registers and if the SEVONPEND is set, it 
could still wake the processor from sleep. The rules of waking the Cortex-M3 processor from 
sleep modes are summarized in Table 14.2.

Table 14.2 WFI and WFE Wake Up Behavior

WFI Behavior Wake Up IRQ Execution
IRQ with BASEPRI

  IRQ priority >  BASEPRI Y Y

  IRQ priority =< BASEPRI N N

IRQ with BASEPRI and PRIMASK

  IRQ priority >  BASEPRI Y N

  IRQ priority =< BASEPRI N N

WFE Behavior Wake Up IRQ Execution
IRQ with BASEPRI, SEVONPEND = 0

  IRQ priority >  BASEPRI Y Y

  IRQ priority =< BASEPRI N N

IRQ with BASEPRI, SEVONPEND = 1

  IRQ priority >  BASEPRI Y Y

  IRQ priority =< BASEPRI Y N

IRQ with BASEPRI and PRIMASK, 

SEVONPEND = 0

  IRQ priority >  BASEPRI N N

  IRQ priority =< BASEPRI N N

IRQ with BASEPRI & PRIMASK, 

SEVONPEND = 1

  IRQ priority >  BASEPRI Y N

  IRQ priority =< BASEPRI Y N

Another feature of sleep mode is that it can be programmed to go back to sleep automatically 
after the interrupt routine exit. In this way we can make the core sleep all the time unless an 
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interrupt needs to be served. To use this feature, we need to set the SLEEPONEXIT bit in the 
System Control register.

Multiprocessor Communication

The Cortex-M3 comes with a simple multiprocessor communication interface for 
synchronizing tasks. The processor has one output signal, called TXEV (Transmit Event), 
for sending out events and an input signal, called RXEV (Receive Event), for receiving 
events. For a system with two processors, the event communication signal connection can be 
implemented as shown in Figure 14.4.

WFI/WFE

Continue to next
instruction

Yes

No

Sleep

Wake up and run
the interrupt

handler

SLEEPONEXIT � 1?

Figure 14.3 Example Use of the SleepOnExit Feature

Cortex-M3 Cortex-M3

TXEV TXEV

RXEV RXEV

Figure 14.4 Event Communication Connection in a Two-Processor System

As mentioned in the previous section on Power Management, the processor can enter sleep 
when the WFE instruction is executed and continue the instruction execution when an external 
event is received. If we use an instruction call SEV (Send Event), one processor can wake up 
another processor that is in sleep mode and make sure both processors start executing a task at 
the same time.
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Processor #1 Processor #2

Execute WFE

Exit sleep mode

Check task status

Execute SEV

Execute task

Execute task

Detect a need to
execute

synchronized task

Detect that
Processor #1 is

sleeping

Enter sleep mode

TXEV signal from
Processor #2 pulsed;
Processor #1 receive;

pulse on RXEV

SLEEPING signal from
Processor #1 asserted

Time

Figure 14.5 Using Event Signals to Synchronize Tasks

WFE

Exit loop

Yes

No

Sleep

Run synchronized
task

More synchronized
tasks?

Event

Yes

No

Wake up by task
synchronization?

Figure 14.6 Example Use of the WFE Feature
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Using this feature, we can make both processors start executing a task at the same time 
(possibly with a couple of clock cycles’ difference, depending on actual chip implementation). 
The number of processors invoked can be any number, but it requires that one processor act as 
a master to generate the event pulse to other processors.

When the WFE instruction is executed, it fi rst checks the local event latch. If the latch is not 
set, the core will enter sleep mode. If the latch is set, it will be cleared and the instruction 
execution will continue without entering sleep mode. The local event latch can be set by 
previously occurring exceptions and by the SEV instruction. So, if you execute an SEV and 
then execute a WFE, the processor will not enter sleep and will simply continue on to the next 
instruction, with the event latch cleared by WFE.

It is also important to note that the processor could also be woken by other events, such as 
interrupt and debugging events. Therefore, before starting the required synchronized task it is 
often necessary to check whether the wake-up was caused by task synchronization.

In most Cortex-M3 based products, there will be only one processor, and the RXEV input is 
likely tied to 0.

Self-Reset Control

The Cortex-M3 provides two self-reset control features. The fi rst one is the VECTRESET 
control bit in the NVIC Application Interrupt and Reset Control register (bit [0]):

    LDR    R0,=0xE000ED0C   ; NVIC AIRCR address
    LDR    R1,=0x05FA0001    ; Set VECTRESET bit (05FA is a write 

; access key)
    STR    R1,[R0]

deadloop

    B      deadloop          ; a deadloop is used to ensure no other 
; instructions

                            ; follow the reset is executed

Writing to this bit will reset the Cortex-M3 processor, excluding the debug logic. This does 
not reset any circuit outside the Cortex-M3 processor. For example, if the SoC contains a 
UART, writing to this bit does not reset the UART or any peripherals outside the Cortex-M3.

The second reset feature is the SYSRESETREQ bit in the same NVIC register. It allows the 
Cortex-M3 processor to assert a reset request signal to the system’s reset generator. Since 
the system reset generator is not part of Cortex-M3 design, the implementation of this reset 
feature depends on the chip design. Therefore, it is necessary to carefully check the chip’s 
specifi cation because this feature might not exist in some chips!
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Here’s an example code using the SYSRESTREQ:

    LDR    R0,�0xE000ED0C   ; NVIC AIRCR address
    LDR    R1,�0x05FA0004    ; Set SYSRESETREQ bit (05FA is a write 

; access key)
    STR    R1,[R0]

deadloop

    B      deadloop          ; a deadloop is used to ensure no other 
; instructions

                            ; follow the reset is executed

In most cases, when the SYSRESETREQ bit is set, the system reset signal of the Cortex-
M3 processor (SYSRESETn) will be asserted by the reset generator. Depending on the chip 
design, it might or might not reset the other parts of the chip, such as peripherals. Normally 
this should not reset the debug logic of the Cortex-M3.

Note that the delay from assertion of SYSRESETREQ to actual reset from the reset generator 
can also be an issue. Due to delay in the reset generator, you might fi nd the processor still 
accepting interrupts after the reset request is set. If you want to stop the core from accepting 
interrupts before running this code, you can set the FAULTMASK using the MSR instruction.
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Debug Architecture
CHAPTER 15

In This Chapter:

● Debugging Features Overview
● CoreSight Overview
● Debug Modes
● Debugging Events
● Breakpoint in the Cortex-M3
● Accessing Register Content in Debug
● Other Core Debugging Features

Debugging Features Overview

The Cortex-M3 processor provides a comprehensive debugging environment. Based on 
the nature of operations, the debugging features can be classifi ed into two groups:

1. Invasive debugging:

• Program halt and stepping

• Hardware breakpoints

• Breakpoint instruction

• Data watchpoint on access to data address, address range, or data value

• Register value accesses (both read or write)

• Debug monitor exception

• ROM-based debugging (Flash patch)
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2. Noninvasive debugging:

• Memory accesses (memory contents can be accessed even when the core is running)

• Instruction trace (via the optional Embedded Trace Module)

• Data trace

• Software trace (via the Instrumentation Trace Module)

• Profi ling (via the Data Watchpoint and Trace Module)

A number of debugging components are included in the Cortex-M3 processor. The debugging 
system is based on the CoreSight debug architecture, allowing a standardized solution 
to access debugging controls, gather trace information, and detect debugging system 
confi guration.

CoreSight Overview

The CoreSight debug architecture covers a wide area, including the debugging interface 
protocol, debugging bus protocol, control of debugging components, security features, trace 
data interface, and more. The CoreSight Technology System Design Guide (Ref 3) is a useful 
document for getting an overview of the architecture. In addition, a number of sections in 
the Cortex-M3 Technical Reference Manual (Ref 1) are descriptions of the debugging 
components in Cortex-M3 design. These components are normally used only by debugger 
software, not by application code. However, it is still useful to briefl y review these items so 
that we can have a better understanding of how the debugging system works.

Processor Debugging Interface

Unlike traditional ARM7 or ARM9, the debugging system of the Cortex-M3 processor 
is based on the CoreSight Debug Architecture. Traditionally, ARM processors provide a 
JTAG interface, allowing registers to be accessed and memory interface to be controlled. 
In the Cortex-M3, the control to the debug logic on the processor is carried out via a bus 
interface called the Debug Access Port (DAP), which is similar to APB in AMBA. The DAP 
is controlled by another component that converts JTAG or Serial-Wire into the DAP bus 
interface protocol.

Since the internal debug bus is similar to APB, it is easy to connect multiple debugging 
components, resulting in a very scalable debugging system. In addition, by separating the 
debug interface and debug control hardware, the actual interface type used on the chip can 
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become transparent; hence the same debugging tasks can be carried out no matter what 
debugging interface you use.

The actual debugging functions in the Cortex-M3 processor core are controlled by the NVIC 
and a number of other debugging components, such as the FPB, the DWT, and the ITM. The 
NVIC contains a number of registers to control the core debugging actions, such as halt and 
stepping, while the other blocks support features such as watchpoints, breakpoints, and debug 
message outputs.

The Debug Host Interface

CoreSight technology supports a number of interface types for connection between the 
debug host and the SoC. Traditionally this has always been JTAG. Now, since the processor 
debugging interface has been changed to a generic bus interface, by putting a different 
interface module between the debug host and the processor’s debug interface we can come up 
with different chips that have different debug host interfaces, without redesigning the debug 
interface on the processor.

Currently Cortex-M3 systems support two types of debug host interface: The fi rst one is the 
well-known JTAG interface, and the second one is a new interface protocol called Serial-
Wire (SW). The SW interface reduces the number of signals to two. Several types of debug 
host interface modules (called Debug Port, or DP) are available from ARM. The debugger 
hardware is connected to one side of a DP, and the other side is connected to the DAP 
interface on the processor. 

Why Serial-Wire?

The Cortex-M3 is targeted at the low-cost microcontroller market in which most devices 
have very low pin counts. For example, some of the low-end versions are in 28-pin 
packages. Despite the fact that JTAG is a very popular protocol, using four pins to debug 
is a lot for a 28-pin device. Therefore, SW is an attractive solution because it can reduce 
the number of debug pins to two.

DP Module, AP Module, and DAP

The connection from external debugging hardware to the debug interface in the Cortex-M3 
processor is divided into multiple stages (see Figure 15.1).

CH15-H8534.indd   235CH15-H8534.indd   235 7/19/07   1:36:08 PM7/19/07   1:36:08 PM



Chapter 15

236

The DP interface module (normally either SWJ-DP or SW-DP) fi rst converts the external 
signals into a generic 32-bit debug bus (a DAP bus in the diagram). SWJ-DP supports both 
JTAG and SW, and SW-DP supports SW only. In the ARM CoreSight product series there is 
also a JTAG-DP, which only supports the JTAG protocol; chip manufacturers can choose to 
use one of these DP modules to suit their needs. The address of the DAP bus is 32-bit, with 
the upper 8 bits of the address bus used to select which device is being accessed. Up to 256 
devices can be attached to the DAP bus. Inside the Cortex-M3 processor, only one of the 
device addresses is used, so you can attach 255 more Access Port (AP) devices to the DAP 
bus if needed.

After passing through the DAP interface in the Cortex-M3 processor, an AP device called 
AHB-AP is connected. This acts as a bus bridge to convert commands into AHB transfers, 
which are inserted into the internal bus network inside the Cortex-M3. This allows the memory 
map of the Cortex-M3, including the debug control registers in the NVIC, to be accessed.

In the CoreSight product series, several types of AP devices are available, including an APB-
AP and a JTAG-AP. The APB-AP can be used to generate APB transfers, and the JTAG-AP can 
be used to control traditional JTAG-based test interfaces such as the debug interface on ARM7.

Trace Interface

Another part of the CoreSight architecture concerns tracing. In the Cortex-M3, there can be 
three types of trace sources:

• Instruction trace: Generated by the Embedded Trace Macrocell (ETM)

• Data trace: Generated by DWT

Debug Host
(PC)

Debug
Interface
Hardware

USB or
Ethernet

JTAG or
Serial-Wire

Microcontroller

AHB-AP

Other AP

Cortex-M3
Core NVIC

Memory

AHB
Interconnect

Cortex-M3

DAP
BusSWJ-DP

or SW-DP

Figure 15.1 Connection from the Debug Host to the Cortex-M3
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• Debug message: Generated by ITM (provides message output such as printf 
in the debugger GUI)

During tracing, the trace results, in the form of data packets, are output from the trace sources 
like ETM, using a trace data bus interface called Advanced Trace Bus (ATB). Based on the 
CoreSight architecture, if a SoC contains multiple trace sources (e.g., multiprocessors), the 
ATB data stream can be merged using ATB merger hardware (in the CoreSight architecture 
this hardware is called ATB funnel). The fi nal data stream on the chip can then be connected 
to a Trace Port Interface Unit (TPIU) and exported to external trace hardware. Once the data 
reach the debug host (for example, a PC), the data stream can then be converted back into 
multiple data streams.

Despite the Cortex-M3 having multiple trace sources, its debugging components are designed 
to handle trace merging so that there is no need to add ATB funnel modules. The trace output 
interface can be connected directly to a special version of the TPIU designed for the Cortex-
M3. The trace data are then captured by external hardware and collected by the debug host 
(e.g., a PC) for analysis.

CoreSight Characteristics

The CoreSight-based design has a number advantages:

• The memory content and peripheral registers can be examined even when the 
processor is running.

• Multiple processor debug interfaces can be controlled with a single piece of debugger 
hardware. For example, if JTAG is used, only one TAP controller is required, even 
when there are multiple processors on the chip.

• Internal debugging interfaces are based on simple bus design, making it scalable and 
easy to develop additional test logic for other parts of the chip or SoC.

• It allows multiple trace data streams to be collected in one trace capture device and 
separated back into multiple streams on the debug host.

The debugging system used in the Cortex-M3 processor is slightly different from the standard 
CoreSight implementation:

• Trace components are specially designed in the Cortex-M3. Some of the ATB 
interface is 8 bits wide in the Cortex-M3, whereas in CoreSight the width is 32 bits.

• The debug implementation in the Cortex-M3 does not support TrustZone.1

1 TrustZone is an ARM technology that provides security features to embedded products.
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• The debug components are part of the system memory map, whereas in standard 
CoreSight systems, a separate bus (with a separate memory map) is used for 
controlling debug components. For example, the conceptual system connection in a 
CoreSight system can be like the one shown in Figure 15.2.

Basic concept of a CoreSight
debug control system

JTAG or
Serial-Wire

Interface to
debug host

System Bus Memory

JTAG
Devices

Debug APB

DAP Bus

JTAG

APB
Multiplexer

Debug
Device

#1

Debug
Device

#2

Debug
Device

#3

APB-AP

AHB-AP

JTAG-AP

SWJ-DP
or SW-DP

Figure 15.2 Design Concept of a CoreSight System

In the Cortex-M3, the debugging devices share the same system memory map (see Figure 15.3).
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Figure 15.3 The Debug System in the Cortex-M3
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Additional information about the CoreSight Debug Architecture can be found in the CoreSight 
Technology System Design Guide (Ref 3).

Debug Modes 

There are two types of debug operation modes in the Cortex-M3. The fi rst one is halt, 
whereby the processor stops program execution completely. The second one is the debug 
monitor exception, whereby the processor executes an exception handler to carry out the 
debugging tasks while still allowing higher-priority exceptions to take place. Debug monitor 
is exception type 12 and its priority is programmable. It can be invoked by means of debug 
events as well as by manually setting the pending bit. In summary:

1. Halt mode:

• Instruction execution is stopped

• SYSTICK counter is stopped

• Supports single-step operations

• Interrupts can be pended and can be invoked during single stepping or be masked so 
that external interrupts are ignored during stepping

2. Debug monitor mode:

• Processor executes exception handler type 12 (debug monitor)

• SYSTICK counter continues to run

• New arrive interrupts may or may not preempt, depending on the priority of the debug 
monitor and the priority of the new interrupt

• If the debug event takes place when a higher-priority interrupt is running, the debug 
event will be missed

• Supports single-step operations

• Memory contents (for example, stack memory) could be changed by the debug 
monitor handler during stacking and handler execution

The reason for having a debug monitor is that in some electronic systems, stopping a processor 
for a debugging operation can be infeasible. For example, in automotive engine control or hard 
disk controller applications, the processor should continue to serve interrupt requests during 
debugging, to ensure safety of operations or to prevent damage to the device being tested. With 
a debug monitor, the debugger can stop and debug the Thread level application and lower-
priority interrupt handlers while higher-priority interrupts and exceptions can still be executed.

To enter halt mode, the C_DEBUGEN bit in the NVIC Debug Halting Control and Status 
Register (DHCSR) must be set. This bit can only be programmed via the DAP, so you cannot 
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halt the Cortex-M3 processor without a debugger. After C_DEBUGEN is set, the core can be 
halted by setting the C_HALT bit in DHCSR. This bit can be set by either the debugger or by 
the software running on the processor itself.

The bit fi eld defi nition of DHCSR differs between read operations and write operations. For 
write operations, a debug key value must be used on bit 31 to bit 16. For read operations, 
there is no debug key and the return value of the upper half word contains the status bits (see 
Table 15.1).

Table 15.1 Debug Halting Control and Status Register (0xE000EDF0)

Bits Name Type Reset  Description
   Value
31:16 KEY W —  Debug key; value of 0xA05F must be written to this fi eld to 

write to this register, otherwise the write will be ignored

25 S_RESET_ST R — Core has been reset or being reset; this bit is clear on read

24 S_RETIRE_ST R —  Instruction is completed since last read; this bit is clear on read

19 S_LOCKUP R — When this bit is 1, the core is in a locked-up state

18 S_SLEEP R — When this bit is 1, the core is in sleep mode

17 S_HALT R — When this bit is 1, the core is halted

16 S_REGRDY R — Register read/write operation is completed

15:6 Reserved — — Reserved

5 C_SNAPSTALL R/W 0* Use to break a stalled memory access

4 Reserved — — Reserved

3 C_MASKINTS R/W 0*  Mask interrupts while stepping; can only be modifi ed when the 
processor is halted

2 C_STEP R/W 0* Single step the processor; valid only if C_DEBUGEN is set

1 C_HALT R/W 0* Halt the processor core; valid only if C_DEBUGEN is set

0 C_DEBUGEN R/W 0* Enable halt mode debug

* The control bit in DHCSR is reset by power on reset. System reset (for example, by the NVIC’s Application Interrupt and 
Reset Control register) does not reset the debug controls.

In normal situations, the DHCSR is used only by the debugger. Application codes should not 
change DHCSR contents to avoid causing problems to debugger tools.

• The control bit in DHCSR is reset by power-on reset. System reset (for example, by 
the NVIC’s Application Interrupt and Reset Control register) does not reset the debug 
controls. For debugging using debug monitor, a different NVIC register, the NVIC’s 
Debug Exception and Monitor Control register, is used to control the debug activities 
(see Table 15.2). Aside from the debug monitor control bits, the Debug Exception 
and Monitor Control register contains the trace system enable bit (TRCENA) and 
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a number of Vector Catch (VC) control bits. The VC feature can be used only with 
halt mode debugging. When a fault (or core reset) takes place and the corresponding 
VC control bit is set, the halt request will be set and the core will halt as soon as the 
current instruction completes.

Table 15.2 Debug Exception and Monitor Control Register (0xE000EDFC)

Bits Name Type Reset  Description
   Value
24 TRCENA R/W 0*  Trace system enable; to use DWT, ETM, ITM and TPIU, this bit 

must be set to 1

23:20 Reserved — — Reserved

19 MON_REQ R/W 0  Indication that the debug monitor is caused by a manual 
pending request rather than hardware debug events

18 MON_STEP R/W 0 Single step the processor; valid only if MON_EN is set

17 MON_PEND R/W 0  Pend the monitor exception request; the core will enter 
monitor exceptions when priority allows

16 MON_EN R/W 0 Enable the debug monitor exception

15:11 Reserved — — Reserved

10 VC_HARDERR R/W 0* Debug trap on hard faults

9 VC_INTERR R/W 0* Debug trap on interrupt/exception service errors 

8 VC_BUSERR R/W 0* Debug trap on bus faults 

7 VC_STATERR R/W 0* Debug trap on usage fault state errors 

6 VC_CHKERR R/W 0*  Debug trap on usage fault-enabled checking errors (e.g., 
unaligned, divide by zero)

5 VC_NOCPERR R/W 0* Debug trap on usage fault, no coprocessor errors 

4 VC_MMERR R/W 0* Debug trap on memory management fault

3:1 Reserved – – Reserved

0 VC_CORERESET R/W 0* Debug trap on core reset

* The control bit in DHCSR is reset by power on reset. System reset (for example, by the NVIC’s Application Interrupt and 
Reset Control register) does not reset the debug controls.

• The TRCENA control bit and VC control bits in DEMCR are reset by power-on 
reset. System reset does not reset these bits. The control bits for monitor mode debug, 
however, are reset by power-on reset as well as system reset.

Debugging Events

The Cortex-M3 can enter debug mode (both halt or debug monitor exception) for a number of 
possible reasons. For halt mode debugging, the processor will enter halt mode if conditions 
resemble those shown in Figure 15.4.
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The external debug request is from a signal called EDBGREQ on the Cortex-M3 processor. 
The actual connection of this signal depends on the microcontroller or SoC design. In some 
cases this signal could be tied low and never occur. However, this can be connected to accept 
debug events from additional debug components (chip manufacturers can add extra debug 
components to the SoC) or, if the design is a multiprocessor system, it could be linked to 
debug events from another processor.

After debugging is completed, the program execution can be returned to normal by clearing 
the C_HALT bit.

Similarly, for debugging with the debug monitor exceptions, a number of debug events can 
cause a debug monitor to take place (see Figure 15.5).

For debug monitor, the behavior is a bit different from halt mode debugging. This is because 
the debug monitor exception is just one type of exception and can be affected by the current 
priority of the processor if it is running another exception handler.

After debugging is completed, the program execution can be returned to normal by carrying 
out an exception return.
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Figure 15.4 Debugging Events for Halt Mode Debugging
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Breakpoint in the Cortex-M3

One of the most commonly used debug features in most microcontrollers is the breakpoint 
feature. In the Cortex-M3, two types of breakpoint mechanisms are supported:

• Breakpoint instruction

• Breakpoint using address comparators in the FPB 

The breakpoint instruction (BKPT immed8) is a 16-bit Thumb instruction with encoding 
0xBExx. The lower 8 bits depend on the immediate data given following the instruction. 
When this instruction is executed, it generates a debug event and can be used to halt the 
processor core if C_DBGEN is set or, if debug monitor is enabled, it can be used to trigger 
the debug monitor exception. Since the debug monitor is one type of exception with 
programmable priority, it can only be used in Thread or exception handlers with priority lower 
than itself. As a result, if debug monitor is used for debugging, the BKPT instructions should 
not be used in exception handlers such as NMI or hardfault, and the debug monitor can only be 
pended and executed after the exception handler is completed.
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Figure 15.5 Debugging Events for Debug Monitor Exceptions
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When the debug monitor exception returns, it is returned to the address of the BKPT 
instruction, not the address after the BKPT instruction. This is because in normal use of 
breakpoint instructions, the BKPT is used to replace a normal instruction, and when the 
breakpoint is hit and the debug action is carried out, the instruction memory is restored to the 
original instruction and the rest of the instruction memory is unaffected.

If the BKPT instruction is executed with C_DEBUGEN � 0 and MON_EN � 0, it will cause 
the processor to enter a hard fault exception, with DEBUGEVT in the Hard Fault Status 
Register (HFSR) set to 1, and BKPT in the Debug Fault Status Register (DFSR) also set to 1. 

The FPB unit can be programmed to generate breakpoint events even if the program memory 
cannot be altered. However, it is limited to six instruction addresses and two literal addresses. 
More information about FPB is covered in the next chapter.

Accessing Register Content in Debug

Two more registers are included in the NVIC to provide debug functionality. They are the 
Debug Core Register Selector Register (DCRSR) and the Debug Core Register Data Register 
(DCRDR) (see Tables 15.3 and 15.4). These two registers allow the debugger to access 
processors’ registers. The register transfer feature can be used only when the processor is halted.

Table 15.3 Debug Core Register Selector Register (0xE000EDF4)

Bits Name Type Reset Value Description
16 REGWnR W — Direction of data transfer:

    Write � 1, Read � 0

15:5 Reserved — — –

4:0 REGSEL W — Register to be accessed:

    00000 � R0

    00001 � R1

    …

    01111 � R15

    10000 � xPSR/fl ags

    10001 � MSP (Main Stack Pointer)

    10010 � PSP (Process Stack Pointer)

    10100 � Special registers:

      [31:24] Control

      [23:16] FAULTMASK

      [15:8]   BASEPRI

      [7:0]     PRIMASK

      Other values are reserved
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To use these registers to read register contents, the following procedure must be followed:

1. Make sure the processor is halted.

2. Write to the DCRSR with bit 16 set to 0, indicating it is a read operation.

3. Poll until the S_REGRDY bit in DHCSR (0xE000EDF0) is 1.

4. Read the DCRSR to get the register content.

Similar operations are needed for writing to a register:

1. Make sure the processor is halted.

2. Write data value to the DCRDR.

3. Write to the DCRSR with bit 16 set to 1, indicating it is a write operation.

4. Poll until the S_REGRDY bit in DHCSR (0xE000EDF0) is 1.

The DCRSR and the DCRDR registers can only transfer register values during halt mode 
debug. For debugging using a debug monitor handler, the contents of some of the register can 
be accessed from the stack memory; the others can be accessed directly within the monitor 
exception handler.

The DCRDR can also be used for semihosting if suitable function libraries and debugger 
support are available. For example, when an application executes a printf statement, the 
text output could be generated by a number of putc (put character) function calls. The putc 
function calls can be implemented as functions that store the output character and status to the 
DCRDR and then trigger debug mode. The debugger can then detect the core halt and collect 
the output character for display. This operation, however, requires the core to halt, whereas the 
semihosting solution using ITM does not have this limitation.

Other Core Debugging Features

The NVIC also contains a number of other features for debugging. These include the 
following:

• External debug request signal: The NVIC provides an external debug request signal 
that allows the Cortex-M3 processor to enter debug mode via an external event such as 

Table 15.4 Debug Core Register Data Register (0xE000EDF8)

Bits Name Type Reset  Description
   Value
31:0 Data R/W —  Data register to hold register read result or to write data into selected 

register
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debug status of other processors in a multiprocessor system. This feature is very useful 
for debugging a multiprocessor system. In simple microcontrollers, this signal is likely 
to be tied low.

• Debug Fault Status register: Due to the various debug events available on the Cortex-
M3, a DFSR is available for the debugger to determine the debug event that has taken 
place.

• Reset control: During debugging, the processor core can be restarted using the 
VECTRESET control bit in the NVIC Application Interrupt and Reset Control register 
(0xE000ED0C). Using this reset control, the processor can be reset without affecting 
the debug components in the system.

• Interrupt masking: This feature is very useful during stepping. For example, if you 
need to debug an application but do not want the code to enter the interrupt service 
routine during the stepping, the interrupt request can be masked. This is done by 
setting the C_MASKINTS bit in the Debug Halting Control and Status register 
(0xE000EDF0).

• Stalled bus transfer termination: If a bus transfer is stalled for a very long time, it is 
possible to terminate the stalled transfer by an NVIC control register. This is done 
by setting the C_SNAPSTALL bit in the Debug Halting Control and Status register 
(0xE000EDF0). This feature can be used only by a debugger during halt.
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Debugging Components
CHAPTER 16

In This Chapter:

● Introduction
● Trace Components: Data Watchpoint and Trace
● Trace Components: Instrumentation Trace Macrocell
● Trace Components: Embedded Trace Macrocell
● Trace Components: Trace Port Interface Unit
● The Flash Patch and Breakpoint Unit
● The AHB Access Port
● ROM Table

Introduction

The Cortex-M3 processor comes with a number of debugging components used to provide 
debugging features such as breakpoint, watchpoint, Flash patch, and trace. If you are an 
application developer, there might be a chance that you’ll never need to know the details 
about these debugging components, because they are normally used only by debugger tools. 
This chapter will introduce you to the basics of each debug component. If you want to know 
details about things such as the actual programmer’s model, refer to the Cortex-M3 Technical 
Reference Manual (Ref 1).

All the debug trace components, as well as the FPB, can be programmed via the Cortex-M3 
Private Peripheral Bus (PPB). In most cases, the components will only be programmed by the 
debugging host. It is not recommended for applications to try accessing the debug components 
(except stimulus port registers in the ITM), because this could interfere with the debugger’s 
operation.

The Trace System in the Cortex-M3

The Cortex-M3 trace system is based on the CoreSight architecture. Trace results are generated 
in the form of packets, which can be of various lengths (in terms of number of bytes). The 
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trace components transfer the packets using Advanced Trace Bus (ATB) to the Trace Port 
Interface Unit (TPIU), which formats the packets into Trace Interface Protocol. The data are 
then captured by an external trace capture device such as a Trace Port Analyzer (TPA).

Cortex-M3
Processor Core ETM ATB

DWT ITM ATBATB

TPIU

Instruction
Trace

Hardware and
Software Trace

Trace Port
Analyzer

Debug
Host

Chip
BoundaryCortex-M3

Trace Port

Figure 16.1 The Cortex-M3 Trace System

There are up to three trace sources in a standard Cortex-M3 processor: ETM, ITM, and DWT. 
Note that the ETM in the Cortex-M3 is optional, so some Cortex-M3 products do not have 
instruction trace capability. During operation, each trace source is assigned a 7-bit ID value 
(ATID), which is transferred along the trace packets during merging in the ATB so that the 
packets can be separated back into multiple trace streams when they reach the debug host.

Unlike many other standard CoreSight components, the debug components in the Cortex-M3 
processor include the functionality of merging ATB streams, whereas in standard CoreSight 
systems, ATB packet merger, called ATB funnel, is a separate block.

Before using the trace system, the Trace Enable (TRCENA) bit in the Debug Exceptions and 
Monitor Control Register (DEMCR) must be set to 1 (see Table 15.2 or D.37). Otherwise the 
trace system will be disabled. In normal operations that do not require tracing, clearing the 
TRCENA bit can disable some of the trace logic and reduce power consumption.

Trace Components: Data Watchpoint and Trace

The DWT has a number of debugging functionalities:

1. It has four comparators, each of which can be confi gured as follows:

• Hardware watchpoint (generates a watchpoint event to processor to invoke debug 
modes such as halt or debug monitor)

• ETM trigger (causes the ETM to emit a trigger packet in the instruction trace stream)

• PC sampler event trigger
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• Data address sampler trigger

• The fi rst comparator can also be used to compare against the clock cycle counter 
(CYCCNT) instead of comparing to a data address

2. Counters for counting the following:

• Clock cycles (CYCCNT)

• Folded instructions

• Load Store Unit (LSU) operations

• Sleep cycles

• Cycles per instruction (CPI)

• Interrupt overhead

3. PC sampling at regular intervals

4. Interrupt events trace

When used as a hardware watchpoint or ETM trigger, the comparator can be programmed to 
compare either data addresses or program counters. When programmed as other functions, it 
compares the data addresses.

Each of the comparators has three corresponding registers:

• COMP (compare) register

• MASK register

• FUNCTION control register

The COMP register is a 32-bit register that the data address (or program counter value, or 
CYCCNT) compares to. The MASK register determines whether any bit in the data address 
will be ignored during the compare (see Table 16.1).

Table 16.1 Encoding of the DWT Mask Registers

MASK Ignore Bit

0 All bits are compared

1 Ignore bit [0]

2 Ignore bit [1:0]

3 Ignore bit [2:0]

... ...

15 Ignore bit [14:0]
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The comparator’s FUNCTION register determines its function. To avoid unexpected behavior, 
the MASK register and the COMP register should be programmed before this register is set. 
If the comparator’s function is to be changed, you should disable the comparator by setting 
FUNCTION to 0 (disable), then program the MASK and COMP registers, and then enable the 
FUNCTION register in the last step.

The rest of the DWT counters are typically used for profi ling the application codes. They 
can be programmed to emit events (in the form of trace packets) when the counter overfl ows. 
One typical application is to use the CYCCNT register to count the number of clock cycles 
required for a specifi c task, for benchmarking purposes.

The TRCENA bit in the DEMCR must be set to 1 before the DWT is used. If the DWT is 
being used to generate a trace, the DWTEN bit in the ITM Control register should also be 
enabled.

Trace Components: Instrumentation Trace Macrocell

The ITM has the following functionalities:

• Software can directly write console messages to ITM stimulus ports and output them 
as trace data.

• The DWT can generate trace packets and output them via the ITM.

• The ITM can generate timestamp packets that are inserted into a trace stream to help 
the debugger fi nd out the timing of events.

Since the ITM uses a trace port to output data, if the microcontroller or SoC does not have 
TPIU support, the traced information cannot be output. Therefore, it is necessary to check 
whether the microcontroller or SoC has all the required features before you use the ITM. In 
the worst case, if these features are not available you can still use the NVIC debug register or 
a UART to output console messages.

To use the ITM, the TRCENA bit in the DEMCR must be set to 1. Otherwise the ITM will be 
disabled and ITM registers cannot be accessed.

In addition, there is also a lock register in the ITM. You need to write the access key 
0xC5ACCE55 (CoreSight ACCESS) to this register before programming the ITM. Otherwise, 
all write operations to the ITM will be ignored.

Finally, the ITM itself is another Control register to control the enabling of individual features. 
The Control register also contains the ATID fi eld, which is an ID value for the ITM in the 
ATB. This ID value must be unique from the IDs for other trace sources so that the debug host 
receiving the trace packet can separate the ITM’s trace packets from other trace packets.
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Software Trace with the ITM

One of the main uses of the ITM is to support debug message output (such as printf). The 
ITM contains 32 stimulus ports, allowing different software processes to output to different 
ports, and the messages can be separated later at the debug host. Each port can be enabled or 
disabled by the Trace Enable register and can be programmed (in groups of eight ports) to 
allow or disallow user processes to write to it.

Unlike UART-based text output, using the ITM to output does not cause much delay for 
the application. A FIFO buffer is used inside the ITM, so writing output messages can be 
buffered. However, it is still necessary to check whether the FIFO is full before you write to it.

The output messages can be collected at the trace port interface or the Serial-Wire Interface 
(SWV) on the TPIU. There is no need to remove code that generates the debug messages from 
the fi nal code, because if the TRCENA control bit is low, the ITM will be inactive and debug 
messages will not be output. You can also switch on the output message in a “live” system and 
use the Trace Enable register in the ITM to limit which ports are enabled so that only some of 
the messages can be output.

Hardware Trace with ITM and DWT

The ITM is used in output of hardware trace packets. The packets are generated from the 
DWT, and the ITM acts as a trace packet merging unit. To use DWT trace, you need to enable 
the DWTEN bit in the ITM Control register; the rest of the DWT trace settings still need to be 
programmed at the DWT.

DWT

Software Trace

Timestamp
Generator

ITM

Merged
Packets

TPIU

Trace
Packets

from ETM

External Trace
Capture Device

(e.g., TPA)

Figure 16.2 Merging of Trace Packets on the ITM and TPIU

ITM Timestamp

ITM has a timestamp feature that allows trace capture tools to fi nd out timing information 
by inserting delta timestamp packets into the traces when a new trace packet enters the 
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FIFO inside the ITM. The timestamp packet is also generated when the timestamp counter 
overfl ows.

The timestamp packets provide the time difference (delta) with previous events. Using the 
delta timestamp packets, the trace capture tools can then establish the timing of when each 
packet is generated and hence reconstruct the timing of various debug events.

Trace Components: Embedded Trace Macrocell

The ETM block is used for providing instruction traces. It is optional and might not be 
available on some Cortex-M3 products. When it is enabled and when trace operation starts, 
it generates instruction trace packets. A FIFO buffer is provided in the ETM to allow enough 
time for the trace stream to be captured.

To reduce the amount of data generated by the ETM, it does not always output exactly what 
address the processor has reached/executed. It usually outputs information about program 
fl ow and outputs full addresses only if needed (e.g., if a branch has taken place). Since the 
debugging host should have a copy of the binary image, it can then reconstruct the instruction 
sequence the processor has carried out.

The ETM also interacts with other debugging components such as the DWT. The comparators 
in the DWT can be used to generate trigger events in the ETM or to control the trace
start/stop.

Unlike the ETM in traditional ARM processors, the Cortex-M3 ETM does not have its own 
address comparators, because the DWT can carry out the comparison for ETM. Furthermore, 
since the data trace functionality is carried out by the DWT, the ETM design in the Cortex-M3 
is quite different from traditional ETM for other ARM cores.

To use the ETM in the Cortex-M3, the following setup is required (handled by debug tools):

1. The TRCENA bit in the Debug Exceptions and Monitor Control Register (DEMCR) must 
be set to 1 (see Table 15.2 or D.37).

2. The ETM needs to be unlocked so that its control registers can be programmed. This can 
be done by writing the value 0xC5ACCE55 to the ETM LOCK_ACCESS register.

3. The ATB ID register (ATID) should be programmed to a unique value so that the trace 
packet output via the TPIU can be separated from packets from other trace sources.

4. The NIDEN input signal of the ETM must be set to high. The implementation of this 
signal is device specifi c. Refer to the datasheet from your chip’s manufacturer for
details.

5. Program the ETM control registers for trace generation.
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Trace Components: Trace Port Interface Unit

The TPIU is used to output trace packets from the ITM, DWT, and ETM to the external 
capture device (for example, a trace port analyzer). The Cortex-M3 TPIU supports two output 
modes:

• Clocked mode, using up to 4-bit parallel data output ports

• Serial-Wire Viewer (SWV) mode, using single-bit SWV output1

In clocked mode, the actual number of bits being used on the data output port can be 
programmed to different sizes. This will depend on the chip package as well as the number 
of signal pins available for trace output in the application. The maximum trace port size 
supported by the chip can be determined from one of the registers in the TPIU. In addition, the 
speed of trace data output can also be programmed.

In SWV mode, the SWV protocol is used. This reduces the number of output signals, but the 
maximum bandwidth for trace output will also be reduced.

To use the TPIU, the TRCENA bit in the DEMCR must be set to 1, and the protocol (mode) 
selection register and trace port size control registers need to be programmed by the trace 
capture software.

The Flash Patch and Breakpoint Unit

The FPB has two functions:

• Hardware breakpoint (generates a breakpoint event to the processor to invoke debug 
modes such as halt or debug monitor)

• Patch instruction or literal data from Code memory space to SRAM

The FPB contains eight comparators:

• Six instruction comparators

• Two literal comparators

1 Not available on early versions of Cortex-M3 products that are based on Cortex-M3 revision 0.
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What Are Literal Loads?

When we program in assembler language, very often we need to set up immediate data 
values in a register. When the value of the immediate data is large, the operation cannot 
be fi tted into one instruction space. For example:

LDR   R0, =0xE000E400   ; External Interrupt Priority Register
                        ; starting address

Since no instruction has an immediate value space of 32, we need to put the immediate 
data in a different memory space, usually after the program code region, and then use a 
PC relative load instruction to read the immediate data into the register. So what we get 
in the compiled binary code will be something like this:

LDR   R0, [PC, #<immed_8>*4]
         ; immed_8 = (address of literal value – PC)/4
...
; literal pool
...
DCD   0xE000E400
...

or with Thumb-2 instructions:

LDR.W R0, [PC, #+/- <offset_12>]
         ; offset_12 = address of literal value - PC
...
; literal pool
...
DCD 0xE000E400
...

Since we are likely to use more than one literal value in our code, the assembler or 
compiler will usually generate a block of literal data, it is commonly called literal pool.

In Cortex-M3, the literal load are data read operation carried out on the data bus
(D-CODE bus or System bus depending on memory location).

The FPB has a Flash Patch control register that contains an enable bit to enable the FPB. In 
addition, each comparator comes with a separate enable bit in its comparator control register. 
Both of the enable bits must be set to 1 for a comparator to operate.

The comparators can be programmed to remap addresses from Code space to the SRAM 
memory region. When this function is used, the REMAP register needs to be programmed 
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to provide the base address of the remapped contents. The upper three bits of the REMAP 
register (bit[31:29]) is hardwired to 3	b001, which limited the remap base address location to 
be within 0x20000000 to 0x3FFFFF80, which is always within the SRAM memory region.

When the instruction address or the literal address hits the address defi ned by the comparator, 
the read access is remapped to the table pointed to by the REMAP register.

Using the remap function, it is possible to create some “what if ” test cases in which the 
original instruction or a literal value is replaced by a different one; even the program code is 
in ROM or Flash memory. An example use is to allow execution of a program or subroutine 
in the SRAM region by patching program ROM in the Code region so that a branch to the test 
program or subroutine can take place. This makes it possible to debug a ROM-based device.

Inst #3

Inst #2

Inst #1

Literal #1

0x00000000

0x20000000

New Inst #3
New Inst #2
New Inst #1

New Literal #1

REMAP Base Address

0x20000000

Code Region

SRAM Region

COMP6

COMP1

COMP0

COMP2

Remap
Operations

Memory
Space

Figure 16.3 Flash Patch: Remap of Instructions and Literal Read

Alternatively, the six instruction address comparators can be used to generate breakpoints as 
well as to invoke halt mode debug or debug monitor exceptions.

CH16-H8534.indd   255CH16-H8534.indd   255 7/19/07   1:36:40 PM7/19/07   1:36:40 PM



Chapter 16

256

The AHB Access Port

The AHB-AP is a bridge between the debug interface module (SWJ-DP or SW-DP) and the 
Cortex-M3 memory system. For the most basic data transfers between the debug host and the 
Cortex-M3 system, three registers in the AHB-AP are used:

• Control and Status Word (CSW)

• Transfer Address Register (TAR)

• Data Read/Write (DRW)

SWJ-DP or
SW-DP

Debug
Host

DAP Port
on

Cortex-M3

AHB-AP

TAR
CSW
DATA

Cortex-M3
Core System

Address

Memory
System

AHB Bus
Matrix

Cortex-M3

Control
Data

Figure 16.4 Connection of the AHB-AP in the Cortex-M3

The CSW register can control the transfer direction (read/write), transfer size, transfer types, 
and so on. The TAR register is used to specify the transfer address, and the DRW register is 
used to carry out the data transfer operation (transfer starts when this register is accessed).

The data register DRW represents exactly what is shown on the bus. For half word and 
byte transfers, the required data will have to be manually shifted to the correct byte lane by 
debugger software. For example, if you want to carry out a data transfer of half word size to 
address 0x1002, you need to have the data on bit [31:16] of the DRW register. The AHB-AP 
can generate unaligned transfers, but it does not rotate the result data based on address offset. 
So the debugger software will have to either rotate the data manually or split an unaligned data 
access into several accesses if needed.

Other registers in the AHB-AP provide additional features. For example, the AHB-AP 
provides four banked registers and an automatic address increment function so that access to 
memory within close range or sequential transfers can be speeded up.

In the CSW register, there is one bit called MasterType. This is normally set to 1 so that 
hardware receiving the transfer from AHB-AP knows that it is from the debugger. However, 
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the debugger can pretend to be the core by clearing this bit. In this case the transfer received 
by the device attached to the AHB system should behave as though it is accessed by the 
processor. This is useful for testing peripherals with FIFO that can behave differently when 
accessed by the debugger.

ROM Table

The ROM table is used to allow auto detection of debug components inside a Cortex-M3 
chip. The Cortex-M3 processor is the fi rst product based on ARM v7-M architecture. It has 
a defi ned memory map and includes a number of debug components. However, in newer 
Cortex-M devices or if the chip designers modifi ed the default debug components, the 
memory map for the debug devices could be different. To allow debug tools to detect the 
components in the debug system, a ROM table is included; it provides information on the 
NVIC and debug block addresses.

The ROM table is located in address 0xE00FF000. Using contents in the ROM table, the 
memory locations of system and debug components can be calculated. The debug tool can 
then check the ID registers of the discovered components and determine what is available on 
the system.

For the Cortex-M3, the fi rst entry in the ROM table (0xE00FF000) should contain the offset to 
the NVIC memory location. (The default value in the ROM table’s fi rst entry is 0xFFF0F003; 
bit[1:0] means that the device exists and there is another entry in the ROM table following. The 
NVIC offset can be calculated as 0xE00FF000 � 0xFFF0F000 � 0xE000E000.)

The default ROM table for the Cortex-M3 is shown in Table 16.2. However, since chip 
manufacturers can add, remove, or replace some of the optional debug components with other 
CoreSight debug components, the value you fi nd on your Cortex-M3 device could be different.

(Continued)

Address Value Name Description

0xE00FF000 0xFFF0F003 NVIC Points to the NVIC base address at 0xE000E000

0xE00FF004 0xFFF02003 DWT Points to the DWT base address at 0xE0001000

0xE00FF008 0xFFF03003 FPB Points to the FPB base address at 0xE0002000

0xE00FF00C 0xFFF01003 ITM Points to the ITM base address at 0xE0000000

0xE00FF010 0xFFF41003  TPIU Points to the TPIU base address at 0xE0040000
 / 0xFFF41002

0xE00FF014 0xFFF42003 ETM Points to the ETM base address at 0xE0041000
 / 0xFFF42002

Table 16.2 Cortex-M3 Default RAM Table Values
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The lowest two bits (LSB) of the value indicate whether the device exists. In normal cases, the 
NVIC, DWT, and FPB should always be there, so the last two bits are always 1. However, the 
TPIU and the ETM could be taken out by the chip manufacturer and might be replaced with 
other debugging components from the CoreSight product family.

The upper part of the value indicates the address offset from the ROM table base address. For 
example:

NVIC address = 0xE00FF000 + 0xFFF0F000 = 0xE000E000 (truncated to
  32-bit)

For debug tool development, it is necessary to determine the address of debug components 
from the ROM table. Some Cortex-M3 devices might have a different setup of the debug 
component connection that can result in different base addresses. By calculating the correct 
device address from this ROM table, the debugger can determine the base address of the 
provided debug component, and then from the component ID of those components the 
debugger can determine the type of debug components that are available.

Address Value Name Description

0xE00FF018 0 End End-of-table marker

0xE00FFFCC 0x1 MEMTYPE  Indicates that system memory can be accessed 
on this memory map

0xE00FFFD0 0 PID4 Peripheral ID space; reserved

0xE00FFFD4 0 PID5 Peripheral ID space; reserved

0xE00FFFD8 0 PID6 Peripheral ID space; reserved

0xE00FFFDC 0 PID7 Peripheral ID space; reserved

0xE00FFFE0 0 PID0 Peripheral ID space; reserved

0xE00FFFE4 0 PID1 Peripheral ID space; reserved

0xE00FFFE8 0 PID2 Peripheral ID space; reserved

0xE00FFFEC 0 PID3 Peripheral ID space; reserved

0xE00FFFF0 0 CID0 Component ID space; reserved

0xE00FFFF4 0 CID1 Component ID space; reserved

0xE00FFFF8 0 CID2 Component ID space; reserved

0xE00FFFFC 0 CID3 Component ID space; reserved

Table 16.2 (Continued)
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Getting Started with Cortex-M3 
Development

CHAPTER 17

In This Chapter:

● Choosing a Cortex-M3 Product
● Differences Between Cortex-M3 Revision 0 and Revision 1
● Development Tools

Choosing a Cortex-M3 Product

Aside from memory, peripheral options, and operation speed, a number of other factors make 
one Cortex-M3 products different from another. The Cortex-M3 design supplied by ARM 
contains a number of features that are confi gurable, such as:

• Number of external interrupts

• Number of interrupt priority levels (width of priority-level registers)

• With MPU or without MPU

• With ETM or without ETM

• Choice of debug interface (Serial-Wire, JTAG, or both)

In most projects, the features and specifi cation of the microcontroller will certainly affect your 
choice of Cortex-M3 product. For example:

• Peripherals: For many applications, peripheral support is the main criterion. 
More peripherals might be good, but this also affects the microcontroller’s power 
consumption and price.

• Memory: Cortex-M3 microcontrollers can have Flash memory from several kilobytes 
to several megabytes. In addition, the size of the internal memory might also be 
important. Usually these factors will have a direct impact on the price.
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• Clock speed: The Cortex-M3 design from ARM can easily reach more than 100 MHz, 
even in 0.18 um processes. However, manufacturers might specify a lower operation 
speed due to limitations of memory access speed.

• Footprint: The Cortex-M3 can be available in many different packages, depending on 
the chip manufacturer’s decision. Many Cortex-M3 devices are available in low pin 
count packages, making them ideal for low-cost manufacturing environments.

Differences Between Cortex-M3 Revision 0 and Revision 1

Early versions of Cortex-M3 products were based on revision 0 of the Cortex-M3 processor. 
Products based on Cortex-M3 revision 1 were available since the third quarter of 2006. When 
this book is published, all new Cortex-M3 based products should be based on revision 1. It 
could be important to know whether the chip you are using is revision 0 or revision 1, because 
there are a number of changes and improvements in the second release.

Changes visible in the programmer’s model and development features include these:

• From revision 1, the stacking of registers when an exception occurs can be confi gured 
such that it is forced to begin from a double word aligned memory address. This is 
done by setting the STKALIGN bit in the NVIC Confi guration Control register.

• For that reason, the NVIC Confi guration Control register has the STKALIGN bit.

• Revision 2 includes the new AUXFAULT (Auxiliary Fault) status register (optional).

• Additional features include data value matching added to the DWT.

• ID register value changes due to the revision fi elds update.

Changes invisible to end users include:

• The memory attribute for Code memory space is hardwired to cacheable, allocated, 
nonbufferable, and nonshareable. This affects the I-Code AHB and the D-Code AHB 
interface but not the system bus interface.

• Supports bus multiplexing operation mode between I-Code AHB and D-Code AHB. 
Under this operation mode, the I-Code and D-Code bus can be merged using a simple 
bus multiplexer (previous solution is using an ADK Bus Matrix component). This can 
lower the total gate count.

• Added new output port for connection to the AHB Trace Macrocell (HTM, a 
CoreSight debug component from ARM) for complex data trace operations.

• Debug components or debug control registers can be accessed even during system 
reset; only during power-on reset are those registers inaccessible.
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• The TPIU has SWV operation mode support. This allows trace information to be 
captured with low-cost hardware.

• In revision 1, the VECTPENDING fi eld in the NVIC Interrupt Control and Status 
register can be affected by the C_MASKINTS bit in the NVIC Debug Halting Control 
and Status register. If C_MASKINTS is set, the VECTPENDING value could be zero 
if the mask is masking a pending interrupt.

• The JTAG-DP debug interface module has been changed to the SWJ-DP module (see 
the next section, “Revision 1 Change: Moving from JTAG-DP to SWJ-DP”). Chip 
manufacturers can continue to use JTAG-DP, which is still a product in the CoreSight 
product family.

Since revision 0 of the Cortex-M3 does not have a double word stack alignment feature in 
its exception sequence, some compiler tools, such as ARM RealView Development Suite 
(RVDS) and the KEIL RealView Microcontroller Development Kit, have special options to 
allow software adjustment of stacking, which allows the developed application to be EABI 
compliant. This could be important if it has to work with other EABI-compliant development 
tools.

To determine which revision of the Cortex-M3 processor is used inside the microcontroller 
or SoC, you can use the CPU ID Base Register in the NVIC. The last 4 bits of this register 
contain the revision number, as shown in Table 17.1.

Table 17.1 CPU ID Base Register (0xE000ED00)

 Implementer  Variant  Constant  PartNo  Revision
 [31:24] [23:20] [19:16] [15:4] [3:0]
Revision 0 (r0p0) 0x41 0x0 0xF 0xC23 0x0

Revision 1 (r1p0) 0x41 0x0 0xF 0xC23 0x1

Revision 1 (r1p1) 0x41 0x1 0xF 0xC23 0x1

Individual debug components inside the Cortex-M3 processor also carry their own ID 
registers, and the revision fi eld might also be different between revision 0 and revision 1.

Revision 1 Change: Moving from JTAG-DP to SWJ-DP

The JTAG-DP provided in some earlier Cortex-M3 products is replaced with the SWJ-DP. The 
Serial-Wire JTAG Debug Port (SWJ-DP) combines the function of the SW-DP and the JTAG-
DP, and with automatic protocol detection. Using this component, a Cortex-M3 device can 
support debugging with both SW and JTAG interfaces.
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Development Tools

To start using the Cortex-M3, you’ll need a number of tools. Typically they will include:

• A compiler and/or assembler: Software to compile your C or assembler application 
codes. Almost all C compiler suites come with an assembler.

• Instruction set simulator: Software to simulate the instruction execution for debugging 
in early stages of software development.

• In-circuit emulator (ICE) or debug probe: A hardware device to connect your debug 
host (usually a PC) to the target circuit. The interface can be either JTAG or SW.

• A development board: A circuit board that contains the microcontroller.

• Trace capture: An optional hardware and software package for capturing instruction 
traces or output from DWT and ITM modules and outputs them to human-readable 
format.

• An embedded operating system: An operating system running on the microcontroller. 
This is optional; many applications do not require an OS.

C Compiler

A number of C compiler suites and development tools are already available for the Cortex-M3 
(see Table 17.2).

The GNU C Compiler from CodeSourcery provides a free solution. At this writing, the main 
GNU C Compiler (GCC) does not have Cortex-M3 support; however, this support will be 
merged into the main GCC in the near future. You can also get evaluation versions of some 
commercial tools such as RealView-MDK.

Debug Host
(PC)

Debug
Interface
Hardware

USB or
Ethernet

JTAG or
Serial-Wire

Microcontroller

AHB-AP

Other AP

Cortex-M3
Core NVIC

Memory

AHB
Interconnect

Cortex-M3

DAP
Bus

JTAG
Interface

Serial-Wire
Interface

Protocol
Detection

SWJ-DP

Figure 17.1 SWJ-DP: Combining JTAG-DP and SW-DP Functionalities
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Embedded Operating System Support

Many applications require an OS. Many OSs are developed for the embedded market. 
Currently, a number of these OSs are supported on the Cortex-M3 (see Table 17.3).

Table 17.2 Examples of Development Tools Supporting Cortex-M3

Company Product1

ARM (www.arm.com)  The Cortex-M3 is supported from RealView Development Suite 3.0 (RVDS). 
RealView-ICE (RVI) version 1.5 is available for connecting debug target to debug 
environment. Note that older products such as ADS and SDT do not support the 
Cortex-M3.

KEIL (an ARM company;  The Cortex-M3 is supported in RealView Microcontroller Development Kit
www.keil.com)  (RealView-MDK). The ULINK(TM) USB-JTAG adapter is available for connecting 

debug target to debug IDE.

CodeSourcery  GNU Tool Chain for ARM Processors is now available at www.codesourcery.com/
(www.codesourcery.com)  gnu_toolchains/arm/. It is based on GNU C Compiler 4.1.0 and supports the 

Cortex-M3.

Rowley Associates  CrossWorks for ARM is a GNU C Compiler-based development suite supporting 
(www.rowley.co.uk) the Cortex-M3 (www.rowley.co.uk/arm/index.htm).

IAR Systems  IAR Embedded Workbench for ARM and Cortex provides a C/C�� compiler
(www.iar.com)  and debug environment. (v4.40 or above). A KickStart kit is also available, based 

on the Luminary Micro LM3S102 microcontroller, including debugger and a 
J-Link Debug Probe for connecting the target board to debug IDE.

Lauterbach  JTAG debugger and trace utilities are available from Lauterbach.
(www.lauterbach.com)

1 Product names are registered trademarks of the companies listed on the left-hand side of the table.
2 Product names are registered trademarks of the companies listed on the left-hand side of the table.

Table 17.3 Examples of Embedded Operating Systems Supporting Cortex-M3

Company Product2

FreeRTOS (www.freertos.org) FreeRTOS

Express Logic (www.expresslogic.com) ThreadX(TM) RTOS

Micrium (www.micrium.com) �C/OS-II

Accelerated Technology (www. Acceleratedtechnology.com) Nucleus

Pumpkin Inc. (www.pumpkininc.com) Salvo RTOS

CMX Systems (www.cmx.com) CMX-RTX

Keil (www.keil.com) ARTX-ARM

Segger (www.segger.com) embOS

IAR Systems (www.iar.com) IAR PowerPac for ARM 
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Porting Applications from the ARM7
to the Cortex-M3

CHAPTER 18

In This Chapter:

● Overview
● System Characteristics
● Assembly Language Files
● C Program Files
● Precompiled Object Files
● Optimization

Overview

For many engineers, porting existing program code to new architecture is a typical task. 
With the Cortex-M3 products starting to emerge on the market, many of us have to face the 
challenge of porting ARM7TDMI (referred to as ARM7 in the following text) code to the 
Cortex-M3. This chapter evaluates a number of aspects involved in porting applications from 
the ARM7 to the Cortex-M3.

There are several areas to consider when you’re porting from the ARM7 to the Cortex-M3:

• System characteristics

• Assembly language fi les

• C language fi les

• Optimization

Overall, low-level code such as hardware control, task management, and exception handlers 
requires the most changes, whereas application codes normally can be ported with minor 
modifi cation and recompiling.
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System Characteristics

There are a number of system characteristic differences between ARM7-based systems and 
Cortex-M3 based systems (for example, memory map, interrupts, MPU, system control, and 
operation modes.)

Memory Map

The most obvious target of modifi cation in porting programs between different microcontrollers 
is their memory map differences. In the ARM7, memory and peripherals can be located in 
almost any address, whereas the Cortex-M3 processor has a predefi ned memory map. Memory 
address differences are usually resolved in compile and linking stages. Peripheral code porting 
could be more time consuming because the programmer model for the peripheral could be 
completely different. In that case, device driver codes might need to be completely rewritten.

Many ARM7 products provide a memory remap feature so that the vector table can be 
remapped to the SRAM after boot-up. In the Cortex-M3, the vector table can be relocated 
using the NVIC register so that memory remapping is no longer needed. Therefore, the 
memory remap feature might be unavailable in many Cortex-M3 products.

Big endian support in the ARM7 is different from such support in the Cortex-M3. Program 
fi les can be recompiled to the new big endian system, but hardcoded lookup tables might need 
to be converted during the porting process.

In ARM720T, and some later ARM processors like ARM9, a feature called high vector is 
available, which allows the vector table to be located to 0xFFFF0000. This feature is for 
supporting Windows CE and is not available in the Cortex-M3.

Interrupts

The second target is the difference in the interrupt controller being used. Program code 
to control the interrupt controller, such as enabling or disabling interrupts, will need to be 
changed. In addition, new code is required for setting up interrupt priority levels and vector 
addresses for various interrupts.

The interrupt return method is also changed. This requires modifi cation of interrupt return 
in assembler code or, if C language is used, it might be necessary to make adjustments on 
compile directives.

Enable and disable of interrupts, previously done by modifying CPSR, must be replaced by 
setting up the interrupt mask register.

In the Cortex-M3, some registers are automatically saved by the stacking and unstacking 
mechanism. Therefore, some of the software stacking operations could be reduced or removed. 
However, in the case of the FIQ handler, traditional ARM cores have separate registers for 
FIQ (R8-R11). Those registers can be used by the FIQ without the need to push them into the 
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stack. However, in the Cortex-M3, these registers are not stacked automatically, so when an 
FIQ handler is ported to the Cortex-M3, either the registers being used by the handler must be 
changed or a stacking step will be needed.

Code for nest interrupt handling can be removed. In the Cortex-M3, the NVIC has built-in 
nested interrupt handling.

There are also differences in error handling. The Cortex-M3 provides various fault status 
registers so that the cause of faults can be located. In addition, new fault types are defi ned in 
the Cortex-M3 (for example, stacking and unstacking faults, memory management faults, and 
hard faults). Therefore, fault handlers will need to be rewritten.

MPU

The MPU programming model is another system block that needs new program code set up. 
Microcontroller products based on the ARM7TDMI/ARM7TDMI-S do not have MPUs, so 
moving the application code to the Cortex-M3 should not be a problem. However, products 
based on the ARM720T have a Memory Management Unit (MMU), which has different 
functionalities to the MPU in Cortex-M3. If the application needs to use the MMU (as in a 
virtual memory system), it cannot be ported to the Cortex-M3.

System Control

System control is another key area to look into when you’re porting applications. The Cortex-
M3 has built-in instructions for entering sleep mode. In addition, the system controller inside 
Cortex-M3 products is likely to be completely different from that of the ARM7 products, so 
function code that involves system management features will need to be rewritten.

Operation Modes

In the ARM7 there are seven operation modes; in the Cortex-M3 these have been changed to 
difference exceptions (see Table 18.1).

Modes and Exceptions in the ARM7 Corresponding Modes and Exceptions in the Cortex-M3
Supervisor (default) Privileged, Thread

Supervisor (software interrupt) Privileged, SVC

FIQ Privileged, interrupt

IRQ Privileged, interrupt

Abort (prefetch) Privileged, bus fault exception

Abort (data) Privileged, bus fault exception

Undefi ned Privileged, usage fault exception

System Privileged, Thread

User User access (nonprivileged), Thread

Table 18.1 Mapping of ARM7TDMI Exceptions and Modes to Cortex-M3
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The FIQ in the ARM7 can be ported as a normal IRQ in the Cortex-M3 because in the Cortex-
M3, we can set up the priority for a particular interrupt to be highest; thus it will be able to 
preempt other exceptions, just like the FIQ in the ARM7. However, due to the difference 
between banked FIQ registers in the ARM7 and the stacked registers in the Cortex-M3, the 
registers being used in the FIQ handler must be changed, or the registers used by the handler 
must be saved to the stack manually.

FIQ and NMI

Many engineers might expect the FIQ in the ARM7 to be directly mapped to the NMI in 
the Cortex-M3. In some applications it is possible, but a number of differences between 
the FIQ and the NMI need special attention when you’re porting applications using the 
NMI as an FIQ.

First, the NMI cannot be disabled, whereas on the ARM7, the FIQ can be disabled by 
setting the F-bit in the CPSR. So it is possible in the Cortex-M3 for an NMI handler to 
start right at boot-up time, whereas in the ARM7, the FIQ is disabled at reset.

Second, you cannot use SVC in an NMI handler on the Cortex-M3, whereas you can 
use SWI in an FIQ handler on the ARM7. During execution of an FIQ handler on the 
ARM7, it is possible for other exceptions to take place (except IRQ, because the I-bit is 
set automatically when the FIQ is served). However, on the Cortex-M3, a fault exception 
inside the NMI handler can cause the processor to lock up.

Assembly Language Files

Porting assembly fi les depends on whether the fi le is for ARM state or Thumb state.

Thumb State

If the fi le is for Thumb state, the situation is much easier. In most cases the fi le can be reused 
without a problem. However, a few Thumb instructions in the ARM7 are not supported in the 
Cortex-M3:

• Any code that tries to switch to ARM state

• SWI is replaced by SVC (note that the usage model is changed as well)

Finally, make sure that the program accesses the stack only in full descending stack operations. 
It is possible, though uncommon, to implement a different stacking model differently (for 
example, full ascending) in ARM7TDMI.
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ARM State

The situation for ARM code is more complicated. There are several scenarios:

• Vector table: In the ARM7, the vector table starts from address 0x0 and consists of 
branch instructions. In the Cortex-M3, the vector table contains the initial value for the 
stack pointer and reset vector address, followed by addresses of exception handlers. 
Due to these differences, the vector table will need to be completely rewritten.

• Register initialization: In the ARM7, it is often necessary to initialize different 
registers for different modes. For example, there are banked stack pointers (R13), a 
link register (R14), and a Saved Program Status Register (SPSR) in the ARM7. Since 
the Cortex-M3 has a different programmer’s model, the register initialization code will 
have to be changed. In fact, the register initialization code on the Cortex-M3 will be 
much simpler because there is no need to switch the processor into a different mode.

• Mode switching and state switching code: Since the operation mode defi nition in the 
Cortex-M3 is different from that of the ARM7, the code for mode switching needs to 
be removed. The same applies to ARM/Thumb state switching code.

• Interrupt enabling and disabling: In the ARM7, interrupts can be enabled or disabled 
by clearing or setting the I-bit in the CPSR. In the Cortex-M3, this is done by 
clearing or setting an interrupt mask register such as PRIMASK or FAULTMASK. 
Furthermore, there is no F-bit in the Cortex-M3 because there is no FIQ input.

• Coprocessor accesses: There is no coprocessor support on the Cortex-M3, so this kind 
of operation cannot be ported.

• Interrupt handler and interrupt return: In the ARM7, the fi rst instruction of the 
interrupt handler is in the vector table, which normally contains a branch instruction 
to the actual interrupt handler. In the Cortex-M3, this step is no longer needed. For 
interrupt returns, the ARM7 relies on manual adjustment of the return program 
counter. In the Cortex-M3, the correctly adjusted program counter is saved into the 
stack and the interrupt return is triggered by loading EXC_RETURN into the program 
counter. Instructions such as MOVS and SUBS should not be used as interrupt returns 
on the Cortex-M3. Due to these differences, interrupt handlers and interrupt return 
codes need modifi cation during porting.

• Nested interrupt support code: In the ARM7, when a nested interrupt is needed, 
usually the IRQ handler will need to switch the processor to system mode and re-
enable the interrupt. This is not required in the Cortex-M3.

• FIQ handler: If an FIQ handler is to be ported, you might need to add an extra step to 
save the contents of R8–R11 to stack memory. In the ARM7, R8–R12 are banked, so 
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the FIQ handler can skip the stack push for these registers. However, on the Cortex-
M3, R0–R3 and R12 are saved onto the stack automatically, but R8–R11 are not.

• Software interrupt (SWI) handler: The SWI is replaced with an SVC. However, when 
porting an SWI handler to an SVC, the code to extract the passing parameter for the 
SWI instruction needs to be updated. The calling SVC instruction address can be 
found in the stacked PC, which is different from the SWI in the ARM7, where the 
program counter address has to be determined from the Link Register.

• SWAP instruction (SWP): There is no swap instruction in the Cortex-M3. If the swap 
instruction was used for semaphores, the exclusive access instructions should be 
used as replacement. This requires rewriting the semaphores code. If the instruction 
was used purely for data transfers, this can be replaced by multiple memory access 
instructions.

• Access to CPSR, SPSR: The CPSR in the ARM7 is replaced with xPSR in the Cortex-
M3, and the SPSR has been removed. If the application would like to access the 
current values of processor fl ags, the program code can be replaced with read access to 
the APSR. If an exception handler would like to access the PSR before the exception 
takes place, it can fi nd the value in the stack memory because the value of xPSR is 
automatically saved to the stack when an interrupt is accepted. So there is no need for 
an SPSR in the Cortex-M3.

• Conditional execution: In the ARM7, conditional execution is supported for many 
ARM instructions, whereas most Thumb-2 instructions do not have the condition fi eld 
inside the instruction coding. When porting these codes to the Cortex-M3, in some 
cases we can use the IF-THEN instruction block; otherwise we might need to insert 
branches to produce conditionally executed codes. One potential issue with replacing 
conditional execution code with IT instruction blocks is that it could increase the code 
size and, as a result, could cause minor problems, such as load/store operations in 
some part of the program could exceed the access range of the instruction.

• Use of the Program Counter value in code that involves calculation using the current 
program counter: In running ARM code on the ARM7, the read value of the PC 
during an instruction is the address of the instruction plus 8. This is because the 
ARM7 has three pipeline stages and, when reading the PC during the execution stage, 
the program counter has already incremented twice, 4 bytes at a time. When porting 
code that processes the PC value to the Cortex-M3, since the code will be in Thumb, 
the offset of the program counter will only be 4.

• Use of the R13 value: In the ARM7, the stack pointer R13 has 32 bits; in the Cortex-
M3 processor, the lowest 2 bits of the stack pointer are always forced to zero. 
Therefore, in the unlikely case that R13 is used as a data register, the code has to be 
modifi ed because the lowest 2 bits would be lost.
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For the rest of the ARM program code, we can try to compile it as Thumb/Thumb-2 and see if 
further modifi cations are needed. For example, some of the pre-index and post-index memory 
access instructions in the ARM7 are not supported in the Cortex-M3 and have to be recoded 
into multiple instructions. Some of the code might have long branch range or large immediate 
data values that cannot be compiled as Thumb code and so must be modifi ed to Thumb-2 code 
manually.

C Program Files

Porting C program fi les is much easier than porting assembly fi les. In most cases, application 
code in C can be recompiled for the Cortex-M3 without a problem. However, there are still a 
few areas that potentially need modifi cation:

• Inline assemblers: Some C program code might have inline assembly code that needs 
modifi cation. This code can be easily located via the __asm keyword. If RVDS/RVCT 
3.0 or later is used, it should be changed to Embedded Assembler.

• Interrupt handler: In the C program you can use __irq to create interrupt handlers that 
work with the ARM7. Due to the difference between the ARM7 and the Cortex-M3 
interrupt behaviors such as saved registers and interrupt returns, depending on 
development tools being used, the __irq keyword might need to be removed. 
(However, in RVDS 3.0 and RVCT 3.0, support for the Cortex-M3 is added to 
the __irq, and use of the __irq directive is recommended for reasons of clarity.)

Precompiled Object Files

Most C compilers will provide precompiled object fi les for various function libraries and 
startup code. Some of those (such as startup code for traditional ARM cores) cannot be used 
on the Cortex-M3 due to the difference in operation modes and states. A number of them will 
have source code available and can be recompiled using Thumb-2 code. Refer to your tool 
vendor documentation for details.

Optimization

After getting the program to work with the Cortex-M3, you might be able to further improve 
it to obtain better performance and lower memory use. A number of areas should be 
explored:

• Use of the Thumb-2 instruction: For example, if a 16-bit Thumb instruction transfers 
data from one register to another and then carries a data processing operation on it, it 
might be possible to replace the sequence with a single Thumb-2 instruction. This can 
reduce the number of clock cycles required for the operation.
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• Bit band: If peripherals are located in bit-band regions, access to control register bits 
can be greatly simplifi ed by accessing the bit via a bit-band alias.

• Multiply and divide: Routines that require divide operations, such as converting
values into decimals for display, can be modifi ed to use the divide instructions in the 
Cortex-M3. For multiplication of larger data, the multiple instructions in the Cortex-
M3 such as UMULL, SMULL, MLA, MLS, UMLAL, and SMLAL can be used to 
reduce complexity of the code.

• Immediate data: Some of the immediate data that cannot be coded in Thumb 
instructions can be produced using Thumb-2 instructions.

• Branches: Some of the longer distance branches that cannot be coded in Thumb 
code (usually ending up with multiple branch steps) can be coded with Thumb-2 
instructions.

• Boolean data: Multiple Boolean data (either 0 or 1) can be packed into a single byte/
half word/word in bit-band regions to save memory space. They can then be accessed 
via the bit-band alias.

• Bit-fi eld processing: The Cortex-M3 provides a number of instructions for bit-fi eld 
processing, including UBFX, SBFX, BFI, BFC, and RBIT. They can simplify many 
program codes for peripheral programming, data packet formation, or extraction and 
serial data communications.

• IT instruction block: Some of the short branches might be replaceable by the IT 
instruction block. By doing that we could avoid wasting clock cycles when the 
pipeline is fl ushed during branching.

• ARM/Thumb state switching: In some situations, ARM developers divide code into 
various fi les so that some of them can be compiled to ARM code and others compiled 
to Thumb code. This is usually needed to improve code density where execution speed 
is not critical. With Thumb-2 features in the Cortex-M3, this step is no longer needed, 
so some of the state switching overhead can be removed, producing short code, less 
overhead, and possibly fewer program fi les.
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Starting Cortex-M3 Development 
Using the GNU Tool Chain

CHAPTER 19

In This Chapter:

● Background
● Getting the GNU Tool Chain
● Development Flow
● Examples
● Accessing Special Registers
● Using Unsupported Instructions
● Inline Assembler in the GNU C Complier

Background

Many people use the GNU tool chain for ARM product development, and a number of 
development tools for ARM are based on the GNU tool chain. The GNU tool chain supports the 
Cortex-M3 and is currently freely available from CodeSourcery (www.codesourcery.com). The 
main GNU C Compiler development will include support for the Cortex-M3 in the near future.

This chapter introduces only the most basic steps in using the GNU tool chain. Detailed uses 
of the tool chain are available on the Internet and are outside the scope of this book.

Assembler syntax for GNU assembler (AS in the GNU tool chain) is a bit different from ARM 
assembler. These differences include declarations, compile directives, comments, and the like. 
Therefore, assembly codes for ARM RealView Development tools need modifi cation before 
being used with the GNU tool chain.  

Getting the GNU Tool Chain

The compiled version of the GNU tool chain can be downloaded from www.codesourcery.
com/gnu_toolchains/arm/. A number of binary builds are available. For the most simple uses, 
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let’s select one with EABI1 and without a specifi c embedded OS as the target platform. The 
tool chain is available for various development platforms such as Windows and Linux. The 
examples shown in this chapter should work with either version.

Development Flow

As with ARM tools, the GNU tool chain contains a compiler, an assembler, and a linker. The 
tools allow projects that contain source code in both C and assembly language (see Figure 19.1).

C Files (.c)

GCC
(Compiler)

Object Files (.o)

Assembly Files (.s)

AS
(Compiler)

Object Files (.o)

Linker Script
Executable
Image File

lD
(Linker)

objdump

objcopy

Binary
Program

Image (.bin)

Disassembled
Code (.txt)

Memory
Layout

Figure 19.1 Example Development Flow Based on the GNU Tool Chain

There are versions of the tool chain for different application environments (Symbian, 
Linux, EABI, and so on). The fi lenames of the programs usually have a prefi x, depending 
on your tool chain target options. For example, if the EABI environment is used, the GCC 
command could be arm-xxxx-eabi-gcc. The following examples use the commands from the 
CodeSourcery GNU ARM Tool Chain shown in Table 19.1.

Table 19.1 Command Name of CodeSourcery Tool Chain

Function Command (EABI Version)

Assembler arm-none-eabi-as

C Compiler arm-none-eabi-gcc

Linker arm-none-eabi-ld

Binary image generator arm-none-eabi-objcopy

Disassembler arm-none-eabi-objdump

1 Embedded Application Binary Interface (EABI) for the ARM architecture—executables must conform to this 
specifi cation in order for them to be used with various development tool sets.

Notice how command names of tool chains from other vendors differ.
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The linker script in the development fl ow is optional but often required when the memory map 
becomes more complex.

Examples

Let’s look at a few examples using the GNU tool chain.

Example 1: The First Program

For a start, let’s try a simple assembly program that we covered in Chapter 10 that calculates 
10 � 9 � 8 .. �1:

========== example1.s ==========
/* defi ne constants */
 .equ      STACK_TOP, 0x20000800
 .text
 .global _start
 .code 16
 .syntax unifi ed
 /* .thumbfunc  */
 / * .thumbfunc is only needed with CodeSourcery GNU tool chain 

prior to 2006Q3-26*/
_start:
 .word STACK_TOP, start
 .type start, function
       /* Start of main program */
start:
 movs r0, #10
 movs r1, #0
 /* Calculate 10�9�8...�1 */
loop:
 adds r1, r0
 subs r0, #1
 bne loop 
 /* Result is now in R1 */
deadloop:
 b deadloop
      .end
========== end of fi le ==========

• The .word directive here helps us defi ne the starting stack pointer value as 
0x20000800 and the reset vector as start.

• .text is a predefi ned directive indicating that it is a program region that needs to be 
assembled. 
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• .global allows the label _start to be shared with other object fi les if needed.

• .code 16 indicates that the program code is in Thumb.

• .syntax unifi ed indicates that the unifi ed assembly language syntax is used.

• _start is a label indicating the starting point of the program region.

• start is a separate label indicating the reset handler.

• .type  start, function declares that the symbol start is a function. This is necessary for 
all the exception vectors in the vector table. Otherwise the assembler will set the LSB 
of the vector to zero.

• .end indicates the end of this program fi le.

Unlike ARM assembler, labels in GNU assemblers are followed by a colon ( : ). Comments 
are quoted with /* and */, and directives are prefi xed by a period ( . ).

Notice that the reset vector (start) is defi ned as a function (.type start function) within thumb 
code (.code 16). The reason for this is to force the LSB of the reset vector to 1 to indicate that 
it starts in Thumb state. Otherwise, the processor will try starting in ARM mode, resulting in a 
hard fault. To assemble this fi le, we can use as, as in the following command:

$> arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

This creates the object fi le example1.o. The options -mcpu and -mthumb defi ne the instruction 
set to be used. The linking stage can be done by ld as follows:

$> arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

Then the binary fi le can be created using Object Copy (objcopy) as follows:

$> arm-none-eabi-objcopy -Obinary example1.out example1.bin

We can examine the output by creating a disassembled code listing fi le using Object Dump 
(objdump):

$> arm-none-eabi-objdump -S example1.out > example1.list

which looks like:

example1.out:     fi le format elf32-littlearm
Disassembly of section .text:

00000000 <_start>:
   0: 0800       lsrs r0, r0, #32
   2: 2000       movs r0, #0
   4: 0009       lsls r1, r1, #0
 ...
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00000008 <start>:
   8: 200a       movs r0, #10
   a: 2100       movs r1, #0

0000000c <loop>:
   c: 1809       adds r1, r1, r0
   e: 3801       subs r0, #1
  10: d1fc       bne.n c <loop>

00000012 <deadloop>:
  12: e7fe       b.n 12 <deadloop>

Example 2: Linking Multiple Files 

As mentioned before, we can create multiple object fi les and link them together. Here we have 
an example of two assembly fi les, example2a.s and example2b.s; example2a.s contains the 
vector table only, and example2b.s contains the program code. The .global is used to pass 
the address from one fi le to another:

========== example2a.s ==========
/* defi ne constants */

 .equ      STACK_TOP, 0x20000800
 .global vectors_table
 .global start
 .global nmi_handler
 .code 16
 .syntax unifi ed

vectors_table:
 .word STACK_TOP, start, nmi_handler, 0x00000000
 .end
========== end of fi le ==========

========== example2b.s ==========
/* Main program */
 .text
 .global _start
 .global start
 .global nmi_handler
 .code 16
 .syntax unifi ed
 .type start, function
 .type nmi_handler, function
_start:
      /* Start of main program */
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start:
 movs r0, #10
 movs r1, #0
 /* Calculate 10�9�8...�1 */
loop:
 adds r1, r0
 subs r0, #1
 bne loop
 /* Result is now in R1 */
deadloop:
 b deadloop
 /* Dummy NMI handler for illustration */
nmi_handler:
 bx lr
 .end
========== end of fi le ==========

To create the executable image, the following steps are used:

1. Assemble example2a.s:

$> arm-none-eabi-as -mcpu=cortex-m3 -mthumb example2a.s -o example2a.o

2. Assemble example2b.s:

$> arm-none-eabi-as -mcpu=cortex-m3 -mthumb example2b.s -o example2b.o

3. Link the object fi les to a single image. Note that the order of the object fi les in the 
command line will affect the order of the objects in the fi nal executable image:

$> arm-none-eabi-ld -Ttext 0x0 -o example2.out example2a.o example2b.o

4. The binary fi le can then be generated:

$> arm-none-eabi-objcopy -Obinary example2.out example2.bin

5. As in the previous example, we generate a list fi le to check that we have a correctly 
assembled image:

$> arm-none-eabi-objdump -S example2.out > example2.list

As the number of fi les increases, the compile process can be simplifi ed using a UNIX makefi le.  
Individual development suites may also have built-in facilities to make the compile process easier.

Example 3: A Simple “Hello World” Program

To be a bit more ambitious, let’s now try the “Hello World” program. (Note: We skipped 
the UART initialization here; you need to add your own UART initialization code to 
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try this example. A example of UART initialization in C language is provided in 
Chapter 20.)

========== example3a.s ==========
/* defi ne constants */
 .equ      STACK_TOP, 0x20000800
 .global vectors_table
 .global _start
 .code 16
 .syntax unifi ed
vectors_table:
 .word STACK_TOP, _start
 .end
========== end of fi le ==========

========== example3b.s ==========
 .text
 .global _start
 .code 16
 .syntax unifi ed
 .type _start, function
_start:
 /* Start of main program */
 movs    r0, #0
 movs    r1, #0
 movs    r2, #0
 movs    r3, #0
 movs    r4, #0
 movs    r5, #0

 ldr  r0,�hello
 bl  puts
 movs    r0, #0x4
 bl      putc
deadloop:
 b deadloop
hello:
 .ascii  "Hello\n"
 .byte   0
 .align

puts: /* Subroutine to send string to UART */
 /* Input r0 � starting address of string */
 /*  The string should be null terminated */
 push {r0, r1, lr}  /* Save registers */
 mov r1, r0 /* Copy address to R1, because */
   /* R0 will be used as input for */
   /* putc */
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putsloop:
 ldrb.w r0,[r1],#1   /* Read one character and increment address */
 cbz r0, putsloopexit /* if character is null, goto end */
 bl putc
 b putsloop
putsloopexit:
 pop {r0, r1, pc} /* return */

.equ UART0_DATA, 0x4000C000

.equ UART0_FLAG, 0x4000C018

putc: /* Subroutine to send a character via UART */
 /* Input R0 � character to send */
 push {r1, r2, r3, lr} /* Save registers */
 LDR r1,�UART0_FLAG
putcwaitloop:
 ldr r2,[r1]    /* Get status fl ag */
 tst.w   r2, #0x20   /* Check transmit buffer full fl ag bit */
 bne putcwaitloop  /* If busy then loop  */
  ldr r1,�UART0_DATA /* otherwise output data to transmit 

buffer */
 str r0, [r1]
 pop {r1, r2, r3, pc} /* Return */
 .end
========== end of fi le ==========

In this example we used .ascii and .byte to create a null terminated string. After defi ning the 
string, we used .align to ensure that the next instruction will start in the right place. Otherwise 
the assembler might put the next instruction in an unaligned location.

To compile the program, create the binary image, and disassemble outputs, the following steps 
can be used:

$> arm-none-eabi-as -mcpu�cortex-m3 -mthumb example3a.s -o example3a.o
$> arm-none-eabi-as -mcpu�cortex-m3 -mthumb example3b.s -o example3b.o
$> arm-none-eabi-ld -Ttext 0x0 -o example3.out example3a.o example3b.o
$> arm-none-eabi-objcopy -Obinary example3.out example3.bin
$> arm-none-eabi-objdump -S example3.out > example3.list

Example 4: Data in RAM

Very often we will data store in SRAM. The following simple example shows the required setup:

========== example4.s ==========
 .equ      STACK_TOP, 0x20000800
 .text
 .global _start
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 .code 16
 .syntax unifi ed
_start:
 .word STACK_TOP, start
 .type start, function
       /* Start of main program */
start:
 movs r0, #10
 movs r1, #0
 /* Calculate 10�9�8...�1 */
loop:
 adds r1, r0
 subs r0, #1
 bne loop 
 /* Result is now in R1 */
 ldr r0,�Result
 str r1,[r0]
deadloop:
 b deadloop

/* Data region */
 .data
Result:
 .word 0
 .end
========== end of fi le ==========

In the program, the .data directive is used to create a data region. Inside this region, a .word 
directive is used to reserved a space labeled Result. The program code can then access this 
space using the defi ned label Result.

To link this program, we need to tell the linker where the RAM is. This can be done using 
the -Tdata option, which sets the data segment to the required location:

$> arm-none-eabi-as -mcpu�cortex-m3 -mthumb example4.s -o example4.o
$> arm-none-eabi-ld -Ttext 0x0 -Tdata 0x20000000 -o example4.out 
 example4.o
$> arm-none-eabi-objcopy -Obinary –R .data example4.out example4.bin
$> arm-none-eabi-objdump -S example4.out > example4.list

Also notice that the –R .data option is used in running objcopy in this example. This prevents 
the data memory region from being included in the binary output fi le.

Example 5: C Only, Without Assembly File

One of the main components in the GNU tool chain is the C compiler. In this example, the 
whole executable—even the reset vector and stack pointer initial value— is coded using C. 
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In addition, a linker script is needed to put the segments in place. First, let’s look at the C 
program fi le:

========== example5.c ==========
#defi ne STACK_TOP 0x20000800
#defi ne NVIC_CCR ((volatile unsigned long *)(0xE000ED14))
// Declare functions
void myputs(char *string1);
void myputc(char mychar);
int  main(void);
void nmi_handler(void);
void hardfault_handler(void);
// Defi ne the vector table
__attribute__ ((section(“vectors”)))
void (* const VectorArray[])(void) � {
  STACK_TOP,
  main,
  nmi_handler,
  hardfault_handler
  };

// Start of main program
int main(void)
{
const char *helloworld[]�"Hello world\n";
*NVIC_CCR � *NVIC_CCR | 0x200; /* Set STKALIGN in NVIC */
myputs(*helloworld);
while(1);
return(0);
}

// Functions
void myputs(char *string1)
{
char mychar;
int j;
j�0;
do {
  mychar � string1[j];
  if (mychar!�0) {
    myputc(mychar);
    j��;
    }
  } while (mychar !� 0);
return;
}
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void myputc(char mychar)
{
#defi ne UART0_DATA ((volatile unsigned long *)(0x4000C000))
#defi ne UART0_FLAG ((volatile unsigned long *)(0x4000C018))

// Wait until busy fl ag is clear
while ((*UART0_FLAG & 0x20) !� 0);
// Output character to UART
*UART0_DATA � mychar;
return;
}

//Dummy handlers
void nmi_handler(void)
{
  return;
}
void hardfault_handler(void)
{
  return;
}

========== end of fi le ==========

The vector table is defi ned using the __attribute__ code. This fi le does not say where the 
vector table is; that’s the job of the linker script. A simple linker script can be something like 
the following simple.ld:

========== simple.ld ==========
/* MEMORY command : Defi ne allowed memory regions       */
/* This part defi ne various memory regions that the     */
/* linker is allowed to put data into.  This is an     */
/* optional feature, but useful because the linker can */
/* warn you when your program is too big to fi t.        */
MEMORY
  {
  /* ROM is a readable (r), executable region (x)      */
  rom (rx)   : ORIGIN � 0, LENGTH � 2M

  /* RAM is a readable (r), writable (w) and           */
  /* executable region (x)                             */
  ram (rwx)  : ORIGIN � 0x20000000, LENGTH � 4M
  }  

/* SECTION command : Defi ne mapping of input sections   */
/* into output sections.                               */
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SECTIONS
  {
  . � 0x0;          /* From 0x00000000 */
  .text : {
    *(vectors)      /* Vector table */
    *(.text)        /* Program code */
    *(.rodata)      /* Read only data */
    }           
  . � 0x20000000;   /* From 0x20000000 */
  .data : {
    *(.data)        /* Data memory */
    }
  .bss : {
    *(.bss)         /* Zero-fi lled run time allocate data memory */
    }
  }  
========== end of fi le ==========

The memory map information is then passed on to the compiler during the compile stage:

$> arm-none-eabi-gcc -mcpu�cortex-m3 -mthumb example5.c -nostartfi les
  -T simple.ld -o example5.o

The output object fi le can then be linked, again, using the linker script:

$> arm-none-eabi-ld -T simple.ld -o example5.out example5.o

In this case we only have one source fi le, so the linking stage can be omitted. Finally, the 
binary and disassembled list fi le can be generated:

$> arm-none-eabi-objcopy -Obinary example5.out example5.bin
$> arm-none-eabi-objdump -S example5.out   > example5.list

In this example we used a compiler option called -nostartfi les. This prevents the C compiler 
from inserting startup library functions into the executable image. One of the reasons for 
doing this is to reduce the size of the program image. However, the main reason to use this 
option is that the startup library code of the GNU tool chain is dependent on the suppliers 
of the distributions. Some of them might not be suitable for the Cortex-M3; they might be 
compiled for traditional ARM processors such as the ARM7 (using ARM code instead of 
Thumb code).

But in many cases, depending on the applications and libraries used, it would be necessary 
to use the startup library to carry out initialization processes such as initialization of the data 
regions (for example, regions of data that should be initialized to zero before running the 
application). The next example shows a simple setup for this. 
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Example 6: C Only, with Standard C Startup Code

In normal situations, the standard C library startup code is automatically included in the 
output when a C program is compiled. This ensures that run-time libraries are initialized 
correctly. The C library startup code is provided by the GNU tool chain; however, the 
setup might vary between different tool chain providers. The following example is based 
on CodeSourcery GNU ARM Tool Chain version 2006q3-26. For this version, you need 
to contact CodeSourcery support to get the correct startup code object fi le, armv7m-crt0.o, 
because this version provides an incorrect startup code compiled in ARM code rather than 
Thumb code. This problem is fi xed in version 2006q3-27 or after. Versions of the GNU tool 
chain from different vendors can have different startup code implementations and different 
fi lenames. Check the documentation from your tool chain to determine the best arrangement 
for defi ning the startup code. 

Before we compile the C source code, the C program in Example 5 requires several small 
modifi cations. By default, the startup code armv7m-crt0 already contains a vector table, 
and it has the NMI handler and hard fault handler names defi ned as _nmi_isr and _fault_isr, 
respectively. As a result, we need to remove our vector table from the C code and rename the 
NMI and hard fault handlers:

========== example6.c ==========
// Declare functions
void myputs(char *string1);
void myputc(char mychar);
int  main(void);
void _nmi_isr(void);
void _fault_isr(void);

// Start of main program
int main(void)
{
const char *helloworld[]�{“Hello world\n”};

myputs(*helloworld);
while(1);
return(0);
}

// Functions
void myputs(char *string1)
{
char mychar;
int j�0;
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do {
  mychar � string1[j];
  if (mychar!�0) {
    myputc(mychar);
    j��;
    }
  } while (mychar !� 0);

return;
}

void myputc(char mychar)
{
#defi ne UART0_DATA ((volatile unsigned long *)(0x4000C000))
#defi ne UART0_FLAG ((volatile unsigned long *)(0x4000C018))

// Wait until busy fl ag is clear
while ((*UART0_FLAG & 0x20) !� 0);
// Output character to UART
*UART0_DATA � mychar;
return;
}

//Dummy handlers
void _nmi_isr(void)
{
  return;
}
void _fault_isr(void)
{
  return;
}
========== end of fi le ==========

A number of linker scripts are already included in the CodeSourcery installation. They can 
be located in the codesourcey/sourcery g��/arm-none-eabi/lib directory. In the following 
example, the fi le lm3s8xx-rom.ld is used. This linker script supports the Luminary Micro 
LM3S8XX series devices.

Aside from the current directory, when the C program code is located, a library subdirectory 
called lib is also created in the current directory. This makes the library search path setup 
easier. The startup code object fi le armv7m-crt0.o and the required linker script are copied to 
this lib directory, and in the following examples, the  -L lib option defi nes directory lib as the 
library search path.
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Now we can compile the C program:

$> arm-none-eabi-gcc -mcpu�cortex-m3 -mthumb example6.c -L lib –T
  lm3s8xx-rom.ld -o example6.out

This creates and links the output object fi le as example6.out. Since there is only one object 
fi le, the binary fi le can be directly generated:

$> arm-none-eabi-objcopy -Obinary example6.out example6.bin

Generation of disassembly code is the same as in the previous example:

$> arm-none-eabi-objdump -S example6.out   > example6.list

Accessing Special Registers

The CodeSourcery GNU ARM tool chain supports access to special registers. The names of 
the special registers must be in lowercase. For example:

 msr    control, r1
 mrs    r1, control
 msr    apsr, R1
 mrs    r0, psr

Using Unsupported Instructions

If you are using another GNU ARM tool chain, there might be cases in which the GNU 
assembler you are using does not support the assembly instruction that you wanted. In this 
situation, you can still insert the instruction in form of binary data using .word. For example:

.equ DW_MSR_CONTROL_R0, 0x8814F380

        ...
        MOV   R0, #0x1
.word   DW_MSR_CONTROL_R0  /* This set the processor in user mode */
        ...

Inline Assembler in the GNU C Compiler

As in the ARM C Compiler, the GNU C Compiler supports an inline assembler. The syntax is 
a little bit different:

        __asm (“    inst1  op1, op2... \n”
               “    inst2  op1, op2... \n”
               ...
               “    inst   op1, op2... \n”
               : output_operands           /* optional */
               : input_operands            /* optional */
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               : clobbered_register_list   /* optional */
               );

For example, a simple code to enter sleep mode looks like this:

void Sleep(void)
{  // Enter sleep mode using Wait-For-Interrupt
  __asm (
    “WFI\n”
    );
}

If the assembler code needs to have an input variable and an output variable—for example, 
divide a variable by 5 in the following code—it can be written as:

unsigned int DataIn, DataOut;  /* variables for input and output */
...
__asm  (“mov   r0, %0\n”
        “mov   r3, #5\n”
        “udiv  r0, r0, r3\n”
        “mov   %1, r0\n”
        : “�r” (DataOut) : “r” (DataIn) : “cc”, “r3” );

With this code, the input parameter is a C variable called DataIn (%0 fi rst parameter), and 
the code returns the result to another C variable called DataOut (%1 second parameter). The 
inline assembler code manually modifi es register r3 and changes the condition fl ags cc so that 
they are listed in the clobbered register list.

For more examples of inline assembler, refer to the GNU tool chain documentation GCC-
Inline-Assembly-HOWTO on the Internet.
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Getting Started with the KEIL RealView 
Microcontroller Development Kit

CHAPTER 20

In This Chapter:

●  Overview
● Getting Started with μVision
● Outputting the “Hello World” Message Via UART
● Testing the Software
● Using the Debugger
● The Instruction Set Simulator
● Modifying the Vector Table
● Stopwatch Example with Interrupts

Overview

Various commercial development platforms are available for the Cortex-M3. One of the 
popular choices is the KEIL RealView Microcontroller Development Kit (RealView MDK). 
The RealView MDK contains various components:

• μVision

• Integrated Development Environment (IDE)

• Debugger

• Simulator

• RealView Compilation Tools from ARM

1. C/C�� Compiler

2. Assembler

3. Linker

• RTX Real-Time Kernel

• Detailed startup code for microcontrollers
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• Flash programming algorithms

• Program examples

For learning about the Cortex-M3 with RealView MDK, it is not necessary to have Cortex-M3 
hardware. The μVision environment contains an instruction set simulator that allows testing of 
simple programs that do not require a development board.

RealView MDK can also be used with other tool chains, such as:

• GNU ARM Compiler

• ARM Development Suite (ADS)

A free evaluation CD-ROM for the KEIL tool can be requested from the KEIL Web site 
(www.keil.com). This version is also included in the Luminary Micro Stellaris Evaluation Kit1 
(www.luminarymicro.com).

Getting Started with μVision

A number of examples are provided with the RealView MDK, including some examples for 
the Luminary Micro Stellaris microcontroller products. These examples provide a powerful 
set of device driver libraries that are ready to use. It’s easy to modify the provided examples to 
start developing your application, or you can develop your project from scratch. The following 
examples illustrate how this is done. The examples shown in this chapter are based on the 
v3.03 beta and on Luminary Micro LM32811 devices.

After installing the RealView MDK, you can start the μVision from the program menu. After 
installation, the μVision might start with a default project for a traditional ARM processor. We 
can close the current project and start a new one by selecting New Project in the pull-down 
menu (see Figure 20.1).

1 Stellaris is a registered trademark of Luminary Micro.

Figure 20.1 Selecting a New Project from the Program Menu
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Here a new project directory called CortexM3 is created (see Figure 20.2).

Figure 20.2 Choosing the CortexM3 Project Directory

Now we need to select the targeted device for this project. In this example, the LM3S811 is 
selected (see Figure 20.3).

Figure 20.3 Selecting the LM3S811 Device
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The software will then ask if you would like to use the default startup code. In this case, we 
select Yes (see Figure 20.4).

Figure 20.4 Choosing to Use the Default Startup Code

Now we have a project called Hello with only one fi le, called Startup.s (see Figure 20.5).

Figure 20.5 Project Created with the Default Startup Code

We can create a new C program fi le containing the main program (see Figure 20.6).

Figure 20.6 Creating a New C Program File

A text fi le is created and saved as hello.c (see Figure 20.7).

Figure 20.7 A Hello World C Example
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Now we need to add this fi le to our project by right-clicking Source Group 1 (see Figure 20.8).

Figure 20.8 Adding the Hello world C Example to the Project

Renaming the Target and File Groups

The target name Target 1 and fi le group name Source Group 1 can be renamed to give 
a clearer meaning. This is done by clicking Target 1 and Source Group 1 in the project 
workspace and editing the names from there.

Select the hello.c that we created and then close the Add File window. Now the project 
contains two fi les (see Figure 20.9).

Figure 20.9 Project Window After the Hello World C Example is Added

We also need to set a linker setting to defi ne the entry point of the program. We do this by 
adding—entry Reset_Handler in the Misc Controls box (see Figure 20.10). This option 
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We can now compile the program. Right-click Target 1 and select Build target (see
Figure 20.11).

You should see the compilation success message in the output window (see Figure 20.12).

Figure 20.10 Defi ning the Entry Point in the Project

Figure 20.11 Starting the Compilation

defi nes the starting point of the program. Reset_Handler is an instruction address that can be 
found in the Startup.s.
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Outputting the “Hello World” Message Via UART

In the program code we created, we used the printf function in the standard C library. Since 
the C library does not know about the actual hardware we are using, if we want to output the 
text message using real hardware such as the UART on a chip, we need additional code.

As mentioned earlier in the book, the implementation of output to actual hardware is often 
referred to as retargeting. Besides creating text output, the retargeting code might also include 
functions for error handling and program termination. In this example, only the text output 
retargeting is covered.

For the following code, the “Hello world” message is output to UART 0 of the LM3S811 
device. The target system used is the Luminary Micro LM3S811 evaluation board. The board 
has a 6 MHz crystal as a clock source, and an internal Phase Locked Loop (PLL) module that 
can step up the clock frequency to 50 MHz after a simple setup process. The baud rate setting 
is 115200 and is output to HyperTerminal running on a Windows PC.

To retarget the printf message, we need to implement the fputc function. In the following code 
we have created a fputc function that calls the sendchar function, which carries out the UART 
control:

========== hello.c ===========
#include "stdio.h"
#defi ne CR     0x0D      // Carriage return
#defi ne LF     0x0A      // Linefeed

void Uart0Init(void);
void SetClockFreq(void);
int  sendchar(int ch);

// Comment out the following line to use 6MHz clock
#defi ne CLOCK50MHZ

Figure 20.12 Compilation Result in the Output Window
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// Register addresses
#defi ne SYSCTRL_RCC   ((volatile unsigned long *)(0x400FE060))
#defi ne SYSCTRL_RIS   ((volatile unsigned long *)(0x400FE050))
#defi ne SYSCTRL_RCGC1 ((volatile unsigned long *)(0x400FE104))
#defi ne SYSCTRL_RCGC2 ((volatile unsigned long *)(0x400FE108))
#defi ne GPIOPA_AFSEL  ((volatile unsigned long *)(0x40004420))

#defi ne UART0_DATA ((volatile unsigned long *)(0x4000C000))
#defi ne UART0_FLAG ((volatile unsigned long *)(0x4000C018))
#defi ne UART0_IBRD ((volatile unsigned long *)(0x4000C024))
#defi ne UART0_FBRD ((volatile unsigned long *)(0x4000C028))
#defi ne UART0_LCRH ((volatile unsigned long *)(0x4000C02C))
#defi ne UART0_CTRL ((volatile unsigned long *)(0x4000C030))
#defi ne UART0_RIS  ((volatile unsigned long *)(0x4000C03C))

int main (void)
{
SetClockFreq(); // Setup clock setting (50MHz/6MHz)
Uart0Init();    // Initialize Uart0

printf (“Hello world!\n”);
while (1);
}

void SetClockFreq(void)
{
#ifdef         CLOCK50MHZ
// Set BYPASS, clear USRSYSDIV and SYSDIV
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xF83FFFFF) | 0x800 ;
// Clr OSCSRC, PWRDN and OEN
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xFFFFCFCF);
// Change SYSDIV, set USRSYSDIV and Crystal value
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xF87FFC3F) | 0x01C002C0;
// Wait until PLLLRIS is set
while ((*SYSCTRL_RIS & 0x40)==0); // wait until PLLLRIS is set
// Clear bypass
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xFFFFF7FF) ;
#else
// Set BYPASS, clear USRSYSDIV and SYSDIV
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xF83FFFFF) | 0x800 ;
#endif
return;
}

void Uart0Init(void)
{
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*SYSCTRL_RCGC1 = *SYSCTRL_RCGC1 | 0x0003;  // Enable UART0 & UART1  
// clock

*SYSCTRL_RCGC2 = *SYSCTRL_RCGC2 | 0x0001; // Enable PORTA clock

*UART0_CTRL = 0; // Disable UART
#ifdef        CLOCK50MHZ
*UART0_IBRD = 27; // Program baud rate for 50MHz clock
*UART0_FBRD = 9;
#else
*UART0_IBRD = 3; // Program baud rate for 6MHz clock
*UART0_FBRD = 17;
#endif
*UART0_LCRH = 0x60; // 8 bit, no parity
*UART0_CTRL = 0x301; // Enable TX and RX, and UART enable
*GPIOPA_AFSEL = *GPIOPA_AFSEL | 0x3; // Use GPIO pins as UART0

return;
}

/* Output a character to UART0 (used by printf function to output 
data) */
int sendchar (int ch)  {
  if (ch == '\n')  {
   while ((*UART0_FLAG & 0x8));   // Wait if it is busy
   *UART0_DATA = CR;              // output extra CR to get correct
  }                               // display on HyperTerminal
  while ((*UART0_FLAG & 0x8));    // Wait if it is busy
  return (*UART0_DATA = ch);      // output data
}
/* Retargetting code for text output */
int fputc(int ch, FILE *f) {
  return (sendchar(ch));
}
========== end of fi le ===========

The SetupClockFreq routine sets the system clock to 50 MHz. The setup sequence is device 
dependent. The subroutine can also be used to set the clock frequency to 6 MHz if the 
CLOCK50 MHZ compile directive is not set.

The UART initialization is carried out inside the Uart0Init subroutine. The setup process 
includes setting up the baud rate generator to provide a baud rate of 115200; confi guring the 
UART to 8-bit, no parity, and 1 stop bit; and switching the GPIO port to alternate function 
because the UART pins are shared with GPIO port A. Before accessing the UART and the 
GPIO, the clocks for these blocks must be turned on. This is done by writing to SYSCTRL_
RCGC1 and SYSCTRL_RCGC2.
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The retargeting code is carried out by fputc, a predefi ned function name for character outputs. 
This function calls the sendchar function to output the character to the UART. The sendchar 
function outputs an extra carriage return character as a new line is detected. This is needed 
to get the text output correct on HyperTerminal; otherwise the new text in the next line will 
overwrite the previous line of text.

After the hello.c program is modifi ed to include the retargeting code, the program is compiled 
again.

Testing the Software

If you’ve got the Luminary Micro LM3S811 evaluation board, you can try out the example
by downloading the compile program into Flash and getting the “Hello world” message 
display output from the HyperTerminal. Assuming that you have set up the software drivers 
that come with the evaluation board, you can download and test the program by following 
these steps.

First, set up the Flash download option. This can be accessed from the pull-down menu, as 
shown in Figure 20.13.

Figure 20.13 Setting Up Flash Programming Confi guration

Inside this menu, we select the Luminary Evaluation Board as the download target (see 
Figure 20.14).

Then we can download the program to the Flash on a chip by selecting Download in the
pull-down menu (see Figure 20.15).

The message shown in Figure 20.16 will appear, indicating that the download is complete. 
Note: If you have the board already running with HyperTerminal, you might need to close 
HyperTerminal, disconnect the USB cable from the PC, and reconnect before programming 
the Flash.

Chapter 20
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Figure 20.14 Selecting Flash Programming Driver

Figure 20.16 Report of the Download Process in the Output Window
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After the programming is completed, you can start HyperTerminal and connect to the board 
using the Virtual COM Port driver (via USB connection) and get the text display from the 
program running on the microcontroller (see Figure 20.17).

Figure 20.18 Confi guring to Use LuminaryMicro Evaluation Board with �Vision Debugger

Figure 20.17 Output of Hello World Example from HyperTerminal console

Using the Debugger

You can use the debugger in μVision to connect to the Luminary Evaluation Board to debug 
your application. By right-clicking the project Target 1 and selecting Options, we can access 
the debug option. In this case we select to use the Luminary Eval Board for debugging (see 
Figure 20.18).
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Figure 20.19 Starting a Debugger Session in �Vision

We can then start the debug session from the pull-down menu (see Figure 20.19). Note: If you 
have the board already running with HyperTerminal, you might need to close HyperTerminal, 
disconnect the USB cable from the PC, and reconnect before starting the debug session.

When the debugger starts, the IDE provides a register view to display register contents. You 
can also get the disassemble code window and see the current instruction address. In Figure 
20.20 we can see that the core is halted at the Reset_Handler.

Figure 20.20 �Vision Debug Environment
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For testing, a breakpoint is set to stop the program execution at the beginning of main. 
This can be done by right-clicking the program code window and selecting Insert/Remove 
Breakpoint (see Figure 20.21). Note: We could also use the Run to main( ) feature in the 
debug option to get the program execution stop at the beginning of main.

Figure 20.21 Insert or Remove Breakpoint

The program execution can then be started using the Run button on the tool bar (see Figure 
20.22).

The program execution is then started, and it stops when it gets to the start of the main 
program (see Figure 20.23).

We can then use the stepping control of the tool bar to test our application and examine the 
results using the register window.
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Figure 20.22 Starting Program Execution Using the RUN Button

The Instruction Set Simulator

The μVision IDE also comes with an instruction set simulator that can be used for debugging 
applications. The operation is similar to using the debugger with hardware and is a useful tool 
for learning the Cortex-M3. To use the instruction set simulator, change the debug option of 
the project to Use Simulator (see Figure 20.24). Note that the simulator cannot simulate all 
hardware peripheral behaviors, so the UART interface code might not simulate correctly.

When using the simulator for debugging, you might also need to adjust the memory setting 
of the simulation. This is done by accessing the Memory Map option after starting the 
debugging session (see Figure 20.25). 

For example, you might need to add the UART memory address range to the memory map 
(see Figure 20.26). Otherwise you will get an abort exception in the simulation when you try 
to access the UART.
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Figure 20.23 Program Execution Halted at Beginning of Main 
When a Break Point is Hit

Figure 20.24 Selecting Simulator as Debugging Target
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Modifying the Vector Table

In the previous example, the vector table is defi ned inside the fi le Startup.s, which is a 
standard startup code the tool prepares automatically. This fi le contains the vector table, 
a default reset handler, a default NMI handler, a default hard fault handler, and a default 
interrupt handler. These exception handlers might need to be customized or modifi ed, 
depending on your application. For example, if a peripheral interrupt is required for your 
application, you need to change the vector table so that the Interrupt Service Routine (ISR) 
you created will be executed when the interrupt is triggered.

The default exception handlers are in the form of assembly code inside Startup.s. However, the 
exception handlers can be implemented in C or in a different assembly program fi le. In these 

Figure 20.25 Accessing the Memory Map Option
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cases, the IMPORT command in the assembler will be required to indicate that the interrupt 
handler address label is defi ned in another fi le. The next section contains an example that 
illustrates how this command is used as well as illustrating simple exception handling in C.

Stopwatch Example with Interrupts

This example includes the use of exceptions such as SYSTICK and the interrupt (UART0). 
The stopwatch to be developed has three states, as illustrated in Figure 20.27.

Based on the previous example, the stopwatch is controlled by the PC using the UART 
interface. To simplify the example code, we fi x the operating speed at 50 MHz.

The timing measurement is carried out by the SYSTICK, which interrupts the processor at 
100 Hz. The SYSTICK is running from the core clock frequency at 50 MHz. Every time the 
SYSTICK exception handler is executed, if the stopwatch is running, it increments the counter 
variable TickCounter.

Since display of text via UART is relatively slow, the control of the stopwatch is handled 
inside the exception handler, and the display of the text and stopwatch value is carried out 
in the main (Thread level). A simple software state machine is used to control the start, stop, 
and clear of the stopwatch. The state machine is controlled via the UART handler, which is 
triggered every time a character is received.

Figure 20.26 Adding UART Memory to Simulator Memory Setup
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Using the same procedure we used for the “Hello World” example, let’s start a new project 
called stopwatch. Instead of having hello.c, a C program fi le called stopwatch.c is added:

========== stopwatch.c ===========
#include “stdio.h”
#defi ne CR     0x0D        // Carriage return
#defi ne LF     0x0A        // Linefeed

void Uart0Init(void);
void SysTickInit(void);
void SetClockFreq(void);
void DisplayTime(void);
void PrintValue(int value);
int  sendchar(int ch);
int  getkey(void);
void Uart0Handler(void);
void SysTickHandler(void);

// Register addresses
#defi ne SYSCTRL_RCC   ((volatile unsigned long *)(0x400FE060))
#defi ne SYSCTRL_RIS   ((volatile unsigned long *)(0x400FE050))
#defi ne SYSCTRL_RCGC1 ((volatile unsigned long *)(0x400FE104))
#defi ne SYSCTRL_RCGC2 ((volatile unsigned long *)(0x400FE108))
#defi ne GPIOPA_AFSEL  ((volatile unsigned long *)(0x40004420))
#defi ne UART0_DATA    ((volatile unsigned long *)(0x4000C000))
#defi ne UART0_FLAG    ((volatile unsigned long *)(0x4000C018))
#defi ne UART0_IBRD    ((volatile unsigned long *)(0x4000C024))
#defi ne UART0_FBRD    ((volatile unsigned long *)(0x4000C028))
#defi ne UART0_LCRH    ((volatile unsigned long *)(0x4000C02C))
#defi ne UART0_CTRL    ((volatile unsigned long *)(0x4000C030))
#defi ne UART0_IM      ((volatile unsigned long *)(0x4000C038))

Idle

StartStop

Key pressed

Key pressedKey pressed

Counting inside
SYSTICK
exception

Counting
stopped

Result
displayed

Result
cleared

Figure 20.27 State Machine Design for Stopwatch
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#defi ne UART0_RIS     ((volatile unsigned long *)(0x4000C03C))
#defi ne UART0_ICR     ((volatile unsigned long *)(0x4000C044))

#defi ne NVIC_IRQ_EN0 ((volatile unsigned long *)(0xE000E100))

// Global variables
volatile int            CurrState;    // State machine
volatile unsigned long  TickCounter;  // Stop watch value
volatile int            KeyReceived;  // Indicate user pressed a key
volatile int            userinput ;   // Key pressed by user

#defi ne IDLE_STATE 0                   // Defi nition of state machine
#defi ne RUN_STATE  1
#defi ne STOP_STATE 2

int main (void)
{
int    CurrStateLocal; // local variable

// Initialize global variable
CurrState = 0;
KeyReceived = 0;

// Initialization  of hardware
SetClockFreq(); // Setup clock setting (50MHz)
Uart0Init();    // Initialize Uart0
SysTickInit();  // Initialize Systick

printf (“Stop Watch\n”);

while (1) {
  CurrStateLocal = CurrState;    // Make a local copy because the
  // value could change by UART handler at any time.
  switch (CurrStateLocal) {
    case (IDLE_STATE):
      printf ("\nPress any key to start\n");
      break;
    case (RUN_STATE):
      printf ("\nPress any key to stop\n");
      break;
    case (STOP_STATE):
      printf ("\nPress any key to clear\n");
      break;
    default:
      CurrState = IDLE_STATE;
      break;
    } // end of switch
    while (KeyReceived == 0) {
      if (CurrState==RUN_STATE){
        DisplayTime();
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        }
      }; // Wait for user input
      if (CurrStateLocal==STOP_STATE) {
         TickCounter=0;
         DisplayTime(); // Display to indicate result is cleared
         }
       else if (CurrStateLocal==RUN_STATE) {
         DisplayTime(); // Display result
         }
    if (KeyReceived!=0) KeyReceived=0;

  }; // end of while loop
} // end of main

void SetClockFreq(void)
{
// Set BYPASS, clear USRSYSDIV and SYSDIV
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xF83FFFFF) | 0x800 ;
// Clr OSCSRC, PWRDN and OEN
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xFFFFCFCF);
// Change SYSDIV, set USRSYSDIV     and Crystal value
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xF87FFC3F) | 0x01C002C0;
// Wait until PLLLRIS is set
while ((*SYSCTRL_RIS & 0x40)==0); // wait until PLLLRIS is set
// Clear bypass
*SYSCTRL_RCC = (*SYSCTRL_RCC & 0xFFFFF7FF) ;
return;
}
// UART0 initialization
void Uart0Init(void)
{

*SYSCTRL_RCGC1 = *SYSCTRL_RCGC1 | 0x0003; // Enable UART0 & UART1  
 clock
*SYSCTRL_RCGC2 = *SYSCTRL_RCGC2 | 0x0001; // Enable PORTA clock

*UART0_CTRL = 0;     // Disable UART
*UART0_IBRD = 27;    // Program baud rate for 50MHz clock
*UART0_FBRD = 9;
*UART0_LCRH = 0x60;  // 8 bit, no parity
*UART0_CTRL = 0x301; // Enable TX and RX, and UART enable
*UART0_IM   = 0x10;  // Enable UART interrupt for receive data
*GPIOPA_AFSEL = *GPIOPA_AFSEL | 0x3; // Use GPIO pins as UART0
*NVIC_IRQ_EN0 = (0x1<<5); // Enable UART interrupt at NVIC

return;
}
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// SYSTICK initialization
void SysTickInit(void)
{

#defi ne NVIC_STCSR   ((volatile unsigned long *)(0xE000E010))
#defi ne NVIC_RELOAD  ((volatile unsigned long *)(0xE000E014))
#defi ne NVIC_CURRVAL ((volatile unsigned long *)(0xE000E018))
#defi ne NVIC_CALVAL  ((volatile unsigned long *)(0xE000E01C))

*NVIC_STCSR   = 0;   // Disable SYSTICK
*NVIC_RELOAD  = 499999; // Reload value for 100Hz with 50MHz clock
*NVIC_CURRVAL = 0;   // Clear current value
*NVIC_STCSR   = 0x7; // Enable SYSTICK with interrupt, core clock
return;
}
// SYSTICK exception handler
void SysTickHandler(void)
{
if (CurrState==RUN_STATE) {
  TickCounter++;
  }
return;
}
// UART0 RX interrupt handler
void Uart0Handler(void)
{
userinput = getkey();
// Indicate a key has been received
KeyReceived++;
// De-assert UART interrupt
*UART0_ICR  = 0x10;
// Switch state
switch (CurrState) {
  case (IDLE_STATE):
    CurrState = RUN_STATE;
    break;
  case (RUN_STATE):
    CurrState = STOP_STATE;
    break;
  case (STOP_STATE):
    CurrState = IDLE_STATE;
    break;
  default:
    CurrState = IDLE_STATE;
    break;
  } // end of switch
return;
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}
// Display the time value
void DisplayTime(void)
{
unsigned long  TickCounterCopy;
unsigned long  TmpValue;

sendchar(CR);
TickCounterCopy = TickCounter; // Make a local copy because the
// value could change by SYSTICK handler at any time.
TmpValue        = TickCounterCopy / 6000; // Minutes
PrintValue(TmpValue);
TickCounterCopy = TickCounterCopy - (TmpValue * 6000);
TmpValue        = TickCounterCopy / 100;   // Seconds
sendchar(':');
PrintValue(TmpValue);
TmpValue        = TickCounterCopy - (TmpValue * 100);
sendchar(':');
PrintValue(TmpValue); // mini-seconds
sendchar(' ');
sendchar(' ');
return;
}
// Display decimal value
void PrintValue(int value)
{
printf ("%d", value);
return;
}

// Output a character to UART0 (used by printf function to output data)
int sendchar (int ch)  {
  if (ch == '\n')  {
    //while ((*UART0_FLAG & 0x8)); // Wait if it is busy
    while ((*UART0_FLAG & 0x20)); // Wait if TXFIFO is full
    *UART0_DATA = CR;  // output extra CR to get correct
  }                               // display on hyperterminal
  //while ((*UART0_FLAG & 0x8)); // Wait if it is busy
  while ((*UART0_FLAG & 0x20)); // Wait if TXFIFO is full
  return (*UART0_DATA = ch);   // output data
}
// Get user input
int getkey (void)  { // Read character from Serial Port
  while (*UART0_FLAG & 0x10); // Wait if RX FIFO empty
  return (*UART0_DATA);
}
// Retarget text output
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int fputc(int ch, FILE *f) {
  return (sendchar(ch));
}

========== end of fi le ===========

The UART initialization has changed slightly to enable interrupts when a character is received 
via the UART interface. To enable the UART interrupt request, the interrupt has to be enabled 
at the UART interrupt mask register as well at the NVIC. For the SYSTICK, only
the exception control at the SYSTICK Control and Status register needs to
be programmed.

In addition, a number of extra functions are added, including the UART and SYSTICK 
handlers, display functions, and SYSTICK initialization. Depending on the design of the 
peripheral, an exception/interrupt handler might need to clear the exception/interrupt request. 
In this case, the UART handler clears the UART interrupt request using the Interrupt Clear 
Register (UART0_ICR). The startup code Startup.s is also modifi ed to set up the exception 
handlers (see Figure 20.28).

Figure 20.28 Adding SysTickHandler and Uart0Handler to the Vector Table by 
IMPORT and DCD Commands

Since the handlers are in the C program fi le, the IMPORT command is needed so that the 
assembler knows that the address label is from a different fi le.

After the program is compiled and downloaded to the evaluation board, it can then be tested 
by connecting to a PC running HyperTerminal. Figure 20.29 shows the result.
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Note: If the test board is a Luminary Micro evaluation board and the Virtual COM Port is 
used for the UART communication, this example might not work correctly (keystrokes in 
HyperTerminal cannot be sent to the board) due to a problem with the Virtual COM port 
device driver. In this case, you might need to test the program on a different PC with only the 
device driver and without the RealView MDK installation.

Figure 20.29 Output of the Stopwatch Example on HyperTerminal Console
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Cortex-M3 Instructions Summary
APPENDIX A

This material is reproduced from the Cortex-M3 Technical Reference Manual with permission 
from ARM Limited. Instructions marked with a plus sign (�) indicate that the fl ag (APSR) 
gets updated.

Supported 16-Bit Thumb Instructions

Table A.1 Supported 16-bit Instructions

Assembler Operation
ADC   <Rd>, <Rm>+  Add register value and C fl ag to register value:

 Rd = Rd + Rm + C

ADD   <Rd>, <Rn>, #<immed_3>+ Add immediate 3-bit value to register:

 Rd = Rn + immed_3

ADD   <Rd>, #<immed_8>+ Add immediate 8-bit value to register:

 Rd = Rd + immed_8

ADD   <Rd>, <Rn>, <Rm>+  Add low register value to low register value:

 Rd = Rn + Rm

ADD   <Rd>, <Rm>  Add high register value to low or high register value

ADD   <Rd>, PC, #<immed_8>*4  Add 4� (immediate 8-bit value) � (word aligned PC value) to 
register:

 Rd = PC + 4*immed_8

ADD   <Rd>, SP, #<immed_8>*4  Add 4� (immediate 8-bit value) � (word aligned SP value) to 
register:

 Rd = SP + 4*immed_8

ADD   SP, #<immed_7>*4 Add 4� (immediate 7-bit value) to SP:

 SP = SP + 4*immed_7

(Continued)
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Table A.1 (Continued)

Assembler Operation
AND   <Rd>, <Rm>+ Bitwise AND register:

 Rd = Rd AND Rm

ASR   <Rd>, <Rm>, #<immed_5>+ Arithmetic shift right by immediate number:

 Rd = Rm >> immed_5

ASR   <Rd>, <Rs>+ Arithmetic shift right by number in register:

 Rd = Rm >> Rs

B<cond> <target_address_8> Branch conditional:
 if <cond> then

   PC = (PC+4)+(SignExtend(target_address_8)*2)

B     <target_address_11> Branch unconditional:

   PC = (PC+4)+(SignExtend(target_address_11)*2)

BIC   <Rd>,<Rm>+ Bit clear:

 Rd = Rd AND (NOT Rm)

BKPT  <immed_8> Software breakpoint

BL    <target_address_11> Branch with link

BLX   <Rm> Branch with link and exchange (Rm[bit0] must be 1)

BX    <Rm> Branch with exchange (Rm[bit0] must be 1)

CBNZ  <Rn>,<label> Compare and branch if nonzero (forward branch only)

CBZ   <Rn>,<label> Compare and branch if zero (forward branch only)

CMN   <Rn>, <Rm>+  Compare negation of register value with another register value: 
compute (Rn - (-Rm)) and update fl ags

CMP   <Rn>, #<immed_8>+ Compare register with immediate 8-bit value

CMP   <Rn>, <Rm>+ Compare registers

CMP   <Rn>, <Rm>+ Compare high registers to low or high register

CPSIE <i or f> Change processor state

CPSID <i or f> CPSIE enable interrupt by clearing PRIMASK(i) or FAULTMASK(f)

  CPSID disable interrupt by setting PRIMASK(i) or FAULTMASK(f)

CPY   <Rd>, <Rm> Copy a high or low register value to another high or low register

EOR   <Rd>, <Rm>+ Bitwise exclusive OR register values

IT<x>  <cond> IF-THEN conditional block; conditionally execute following two to 

IT<x><y>  <cond> four instructions based on condition <cond>
IT<x><y><z>  <cond> 

LDMIA <Rn>!, <registers>  Load Multiple Increment After; load multiple words from memory 
starting from address specifi ed by Rn
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Table A.1 (Continued)

Assembler Operation

LDR   <Rd>,[<Rn>,#<immed_5>*4]  Load memory word from base register address � 5-bit immediate 
offset

LDR   <Rd>,[<Rn>,<Rm>] Load memory word from base register address � register offset

LDR   <Rd>,[PC,#<immed_8>*4] Load memory word from PC address � 8-bit immediate offset

LDR   <Rd>,[SP,#<immed_8>*4] Load memory word from SP address � 8-bit immediate offset

LDRB  <Rd>,[<Rn>,#<immed_5>]  Load memory byte[7:0] from base register address � 5-bit 
immediate offset

LDRB  <Rd>,[<Rn>,<Rm>]  Load memory byte[7:0] from base register address � register offset

LDRH  <Rd>,[<Rn>,#<immed_5>*2]  Load memory half word[15:0] from base register address � 5-bit 
immediate offset

LDRH  <Rd>,[<Rn>,<Rm>]  Load memory half word[15:0] from base register address � 
register offset

LDRSB <Rd>,[<Rn>,<Rm>]  Load signed memory byte[7:0] from base register address � 
register offset

LDRSH  <Rd>,[<Rn>,<Rm>]  Load signed memory half word[7:0] from base register address � 
register offset

LSL   <Rd>, <Rm> #<immed_5>+ Logical shift left by immediate number:

 Rd = Rd << immed_5

LSL   <Rd>, <Rs>+ Logical shift left by number in register:

 Rd = Rd << Rs

LSR   <Rd>, <Rm> #<immed_5>+ Logical shift right by immediate number:

 Rd = Rd >> immed_5

LSR   <Rd>, <Rs>+ Logical shift right by number in register:

 Rd = Rd >> Rs

MOV   <Rd>, #<immed_8>+ Move immediate 8-bit value to register:

 Rd = immed_8

MOV   <Rd>, <Rn>+ Move low register value to low register

MOV   <Rd>, <Rm> Move high or low register value to high or low register

MUL   <Rd>, <Rm>+ Multiply register value:

 Rd = Rd * Rm

MVN   <Rd>, <Rm>+ Move complement of register value to register:

 Rd = NOT(Rm)

NEG   <Rd>,<Rm>+ Negative register value and store in register:

 Rd = 0-Rm

(Continued)

APP A-H8534.indd   317APP A-H8534.indd   317 7/19/07   1:26:35 PM7/19/07   1:26:35 PM



Appendix A

318

Table A.1 (Continued)

Assembler Operation

NOP No operation

ORR   <Rd>, <Rm>+ Bitwise OR register

 Rd = Rd OR Rm

POP   <registers> Pop registers from stack

POP   <registers, PC> Pop registers and PC from stack

PUSH  <registers> Push registers into stack

PUSH  <registers, LR> Push registers and LR into stack

REV   <Rd>, <Rn> Reverse bytes in word and copy to register:

 Rd = {Rn[7:0],Rn[15:8],Rn[23:16],Rn[31:24]}

REV16 <Rd>, <Rn> Reverse bytes in two half words and copy to register:

 Rd = {Rn[23:16],Rn[31:24],Rn[7:0],Rn[15:8]}

REVSH <Rd>, <Rn>  Reverse bytes in low half word[15:0], sign-extend, and copy to 
register:

 Rd = SignExtend({Rn[7:0],Rn[15:8})

ROR   <Rd>, <Rs>+ Rotate right by amount in register

SBC   <Rd>, <Rm>+ Subtract register value and borrow (~C) from register value:

 Rd = Rd - Rm - NOT(C)

SEV Send event

STMIA  <Rn>!, <registers> Store multiple registers word to sequential memory locations

STR   <Rd>,[<Rn>,#<immed_5>*4] Store register word to register address � 5-bit immediate offset

STR   <Rd>,[<Rn>,<Rm>] Store register word to base register address � register offset

STR   <Rd>,[PC,#<immed_8>*4] Store register word to PC address � 8-bit immediate offset

STR   <Rd>,[SP,#<immed_8>*4] Store register word to SP address � 8-bit immediate offset

STRB  <Rd>,[<Rn>,#<immed_5>] Store register byte[7:0] to register address � 5-bit immediate offset

STRB  <Rd>,[<Rn>,<Rm>] Store register byte[7:0] tp register address � register offset

STRH  <Rd>,[<Rn>,#<immed_5>*2]  Store register half word[15:0] to register address � 5-bit 
immediate offset

STRH  <Rd>,[<Rn>,<Rm>] Store register half word[15:0] to register address � register offset

SUB   <Rd>, <Rn>, #<immed_3>+ Subtract immediate 3-bit value from register:

 Rd = Rn - immed_3

SUB   <Rd>, #<immed_8>+ Subtract immediate 8-bit value from register value:

 Rd = Rd - immed_8

SUB   <Rd>, <Rn>, <Rm>+ Subtract register values:

 Rd = Rn - Rm
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Table A.1 (Continued)

Assembler Operation

SUB   SP, #<immed_7>*4 Subtract 4(immediate 7-bit value) from SP:

 SP = SP - immed_7*4

SVC   <immed_8> Operating system service call with 8-bit immediate call code

SXTB   <Rd>, <Rm>  Extract byte[7:0] from register, move to register, and sign extend 
to 32-bit

SXTH   <Rd>, <Rm>  Extract half word[15:0] from register, move to register, and sign 
extend to 32-bit

TST    <Rn>, <Rm>+  Test register value for set bits by ANDing it with another register 
value:

 Rn AND Rm

UXTB   <Rd>, <Rm>  Extract byte[7:0] from register, move to register, and zero extend 
to 32-bit

UXTH   <Rd>, <Rm>  Extract half word[15:0] from register, move to register, and zero 
extend to 32-bit

WFE Wait for event

WFI Wait for interrupt

Supported 32-Bit Thumb-2 Instructions

Instructions with {S} update fl ags (APSR) only if the S suffi x is used. Instructions marked with 
a plus sign (�) indicate that the fl ag (APSR) gets updated.

Note: To support immediate data of commonly required value ranges, many Thumb-2 
instructions use an immediate data-encoding scheme, labeled modify_constant in Table A.2. 
The details of this encoding scheme are documented in the ARM Architecture Application 
Level Reference Manual, Section A5.2, “Immediate Constants. ”

Table A.2 Supported 32-bit Instructions

Assembler Operation
ADC{S}.W <Rd>,<Rn>, Add register value, immediate value, and C fl ag to register
#<modify_constant(immed_12)> value:

 Rd = Rd + modify_constant(immed_12) + C

ADC{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Add register value, shifted register value, and C bit:

 Rd = Rn + (Rm<<shift) + C

ADD{S}.W <Rd>,<Rn>, Add register value and immediate value to register
#<modify_constant(immed_12)> value:

 Rd = Rd + modify_constant(immed_12)

(Continued)
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Table A.2 (Continued)

Assembler Operation

ADD{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Add register value, shifted register value:

 Rd = Rn + (Rm<<shift)

ADDW.W   <Rd>, <Rn>, #<immed_12> Add register value and immediate 12-bit value

AND{S}.W <Rd>,<Rn>, Bitwise AND register value with immediate value
#<modify_constant(immed_12)>

AND{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Bitwise AND register value with shifted register value

ASR{S}.W <Rd>,<Rn>,<Rm> Arithmetic shift right by number in register

B.W Unconditional branch

B{cond}.W <label> Conditional branch

BFC.W <Rd>, #<lsb>, #<width> Clear bit fi eld

BFI.W <Rd>, <Rn>, #<lsb>, #<width> Insert bit fi eld from one register value into another

BIC{S}.W <Rd>,<Rn>, Bitwise AND register value with complement of 
#<modify_constant(immed_12)> immediate value

BIC{S}.W <Rd>,<Rn>,<Rm>{,<shift>}  Bitwise AND register value with complement of shifted 
register value

BL <label> Branch with link

CLZ.W <Rd>, <Rn> Count leading zeros in register value

CLREX.W Clear exclusive access monitor status

CMN.W <Rn>,  Compare register value with two’s complement of 
#<modify_constant(immed_12)> + immediate value

CMN.W <Rn>, <Rm>{, <shift>}+  Compare register value with two’s complement of register 
value

CMP.W <Rn>,  Compare register value with immediate value
#<modify_constant(immed_12)> +

CMP.W <Rn>, <Rm>{, <shift>}+ Compare register value with register value

DMB Data memory barrier

DSB Data synchronization barrier

EOR{S}.W <Rd>,<Rn>, Exclusive OR register value with immediate value
#<modify_constant(immed_12)>

EOR{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Exclusive OR register value with shifted register value

ISB Instruction synchronization barrier

LDM{IA|DB}.W <Rn>{!}, <registers>  Load multiple memory register, increment after or 
decrement before

LDR.W  <Rxf>, [<Rn>,#<offset_12>]  Read memory word from base register address � 
immediate 12-bit value offset
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Table A.2 (Continued)

Assembler Operation

LDR.W  <Rxf>, [<Rn>],  Read memory word from base register address with 
#+/-<offset_8> immediate 8-bit value offset, post-indexed

LDR.W  <Rxf>,  Read memory word from base register address with 
[<Rn>, #+/-<offset_8>]! immediate 8-bit value offset, pre-indexed

LDR.W  <Rxf>,  Read memory word from base register address with 
[<Rn>,<Rm> {,LSL #<shift>}] shifted register value offset (shift range from 0 to 3)

LDR.W  <Rxf>,  Read memory word from PC with immediate 12-bit value 
[PC, #+/-<offset_12>] offset

LDR.W  PC, [<Rn>,#<offset_12>]  Read branch target from base register address � 
immediate 12-bit value offset and branch

LDR.W  PC, [<Rn>], #+/-<offset_8>  Read branch target from base register address with 
immediate 8-bit value offset, post-indexed, and branch

LDR.W  PC, [<Rn>, #+/-<offset_8>]!  Read branch target from base register address with 
immediate 8-bit value offset, pre-indexed, and branch

LDR.W  PC,  Read branch target from base register address with 
[<Rn>,<Rm> {,LSL #<shift>}]  shifted register value offset (shift range from 0 to 3), and 

branch

LDR.W  PC, [PC, #+/-<offset_12>]  Read branch target from PC with immediate 12-bit value 
offset and branch

LDRB.W  <Rxf>, [<Rn>,#<offset_12>]  Read memory byte from base register address � 
immediate 12-bit value offset

LDRB.W  <Rxf>,  Read memory byte from base register address with 
[<Rn>], #+/-<offset_8> immediate 8-bit value offset, post-indexed

LDRB.W  <Rxf>,  Read memory byte from base register address with 
[<Rn>, #+/-<offset_8>]! immediate 8-bit value offset, pre-indexed

LDRB.W  <Rxf>,  Read memory byte from base register address with shifted 
[<Rn>,<Rm> {,LSL #<shift>}] register value offset (shift range from 0 to 3)

LDRB.W  <Rxf>,  Read memory byte from PC with immediate 12-bit value 
[PC, #+/-<offset_12>] offset

LDRD.W  <Rxf1>,<Rxf2>, Read double word from memory from base register 
[<Rn>,#+/-<offset_8>*4] {!} address �/� immediate offset, pre-indexed

LDRD.W  <Rxf1>,<Rxf2>, Read double word from memory from base register 
[<Rn>],#+/-<offset_8>*4 address �/� immediate offset, post-indexed

LDREX.W  <Rxf>,  Exclusive load word from base register address with 
[<Rn> {,#<offset_8>*4}]  immediate offset

LDREXB.W <Rxf>,[<Rn>] Exclusive load byte from register address

LDREXH.W <Rxf>,[<Rn>] Exclusive load half word from register address

(Continued)
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Table A.2 (Continued)

Assembler Operation

LDRH.W  <Rxf>, [<Rn>,#<offset_12>]  Read memory half word from base register address � 
immediate 12-bit value offset

LDRH.W  <Rxf>, [<Rn>],  Read memory half word from base register address with 
#+/-<offset_8> immediate 8-bit value offset, post-indexed

LDRH.W  <Rxf>,  Read memory half word from base register address with 
[<Rn>, #+/-<offset_8>]! immediate 8-bit value offset, pre-indexed

LDRH.W  <Rxf>,  Read memory half word from base register address with 
[<Rn>,<Rm> {,LSL #<shift>}] shifted register value offset (shift range from 0 to 3)

LDRH.W  <Rxf>,  Read memory half word from PC with immediate 12-bit 
[PC, #+/-<offset_12>] value offset

LDRSB.W  <Rxf>,  Read memory byte from base register address � 
[<Rn>,#<offset_12>]  immediate 12-bit value offset, sign extend, and copy to 

register

LDRSB.W  <Rxf>,  Read memory byte from base register address with 
[<Rn>], #+/-<offset_8>  immediate 8-bit value offset, sign extend, and copy to 

register, post-indexed

LDRSB.W  <Rxf>,  Read memory byte from base register address with 
[<Rn>, #+/-<offset_8>]!  immediate 8-bit value offset, sign extend, and copy to 

register, pre-indexed

LDRSB.W  <Rxf>,  Read memory byte from base register address with shifted 
[<Rn>,<Rm> {,LSL #<shift>}]  register value offset (shift range from 0 to 3), sign extend, 

and copy to register

LDRSB.W  <Rxf>,  Read memory byte from PC with immediate 12-bit value 
[PC, #+/-<offset_12>] offset, sign extend, and copy to register

LDRSH.W  <Rxf>,  Read memory half word from base register address � 
[<Rn>,#<offset_12>]  immediate 12-bit value offset, sign extend, and copy to 

register

LDRSH.W  <Rxf>,  Read memory half word from base register address with 
[<Rn>], #+/-<offset_8>  immediate 8-bit value offset, sign extend, and copy to 

register, post-indexed

LDRSH.W  <Rxf>,  Read memory half word from base register address with 
[<Rn>, #+/-<offset_8>]!  immediate 8-bit value offset, sign extend, and copy to 

register, pre-indexed

LDRSH.W  <Rxf>,  Read memory half word from base register address with 
[<Rn>,<Rm> {,LSL #<shift>}]  shifted register value offset (shift range from 0 to 3), sign 

extend, and copy to register

LDRSH.W  <Rxf>,  Read memory half word from PC with immediate 12-bit 
[PC, #+/-<offset_12>] value offset, sign extend, and copy to register
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Table A.2 (Continued)

Assembler Operation

LDRT.W   <Rxf>, [<Rn>,#<offset_8>]  Word store with translation; in privileged mode, write to 
base register address with immediate offset and with user 
access level

LDRBT.W  <Rxf>, [<Rn>,#<offset_8>]  Byte store with translation; in privileged mode, write to 
base register address with immediate offset and with user 
access level

LDRHT.W  <Rxf>, [<Rn>,#<offset_8>]  Half-word store with translation; in privileged mode, 
write to base register address with immediate offset and 
with user access level

LSL{S}.W  <Rd>, <Rn>, <Rm> Logical shift left register value by number in register

LSR{S}.W  <Rd>, <Rn>, <Rm> Logical shift right register value by number in register

MLA.W   <Rd>, <Rn>, <Rm>, <Racc>  Multiple accumulate: Multiply two signed or unsigned 
register values and add the low 32 bits to a register value:

 Rd = (Rn*Rm) + Racc

MLS.W   <Rd>, <Rn>, <Rm>, <Racc>  Multiply and subtract; multiply two signed or unsigned 
register values and subtract the low 32 bits from a register 
value:

 Rd = Racc - (Rn*Rm)

MOV{S}.W  <Rd>,  Move immediate value to register:
#<modify_constant(immed_12)> Rd = modify_constant(immed_12)

MOV{S}.W  <Rd>, <Rm>{, <shift>} Move shifted register value to register

MOVT.W  <Rd>, #<immed_16>  Move immediate 16-bit value to top half word[31:16] of 
register; lower half not affected

MOVW.W  <Rd>, #<immed_16>  Move immediate 16-bit value to bottom half word[15:0] 
of register and clear upper half word

MRS  <Rd>, <sreg> Read special registers and copy to register

MSR  <sreg>,<Rd> Write register value to special register

MUL.W  <Rd>, <Rn>, <Rm> Multiply two signed or unsigned values:

 Rd = Rm * Rn

NOP.W No operation

ORN{S}.W <Rd>,<Rn>, Bitwise OR NOT register value with immediate value
#<modify_constant(immed_12)>

ORN{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Bitwise OR NOT register value with shifted register value

ORR{S}.W <Rd>,<Rn>, Bitwise OR register value with immediate value
#<modify_constant(immed_12)>

ORR{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Bitwise OR register value with shifted register value

(Continued)
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Table A.2 (Continued)

Assembler Operation

POP.W   <registers> Pop registers from stack

POP.W   <registers, PC> Pop registers and PC from stack

PUSH.W  <registers> Push registers into stack

PUSH.W  <registers, LR> Push registers and LR into stack

RBIT.W  <Rd>, <Rm> Reverse bit order

REV.W   <Rd>, <Rm> Reverse bytes in word

REV16.W <Rd>, <Rn> Reverse bytes in each half word

REVSH.W <Rd>, <Rn> Reverse bytes in bottom half word and sign extend

ROR{S}.W <Rd>, <Rn>, <Rm> Rotate right by number in register

RSB{S}.W <Rd>,<Rn>, Reverse subtract register value from immediate value
#<modify_constant(immed_12)>

RSB{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Reverse subtract register value from shifted register value

RRX{S}.W <Rd>, <Rm> Rotate right extended by 1 bit

SBC{S}.W <Rd>,<Rn>, Subtract immediate value and C bit from register value
#<modify_constant(immed_12)>

SBC{S}.W <Rd>,<Rn>,<Rm>{,<shift>}  Subtract shifted register value and C bit from register 
value

SBFX.W  <Rd>, <Rn>,  Copy bit fi eld from register and sign extend to 32 bits
#<lsb>, #<width>

SDIV.W  <Rd>, <Rn>, <Rm> Signed divide:

 Rd = Rn/Rm

SEV Send Event

SMLAL.W  <RdLo>, <RdHi>, Multiply signed words and add signed extended value to 
<Rn>, <Rm> two-register value:

 {RdHi,RdLo} = (Rn*Rm)+{RdHi,RdLo}

SMULL.W  <RdLo>, <RdHi>,  Multiply two signed register values:
<Rn>, <Rm> {RdHi,RdLo} = (Rn*Rm)

SSAT.W  <Rd>, #<imm>,  Signed saturate shifted register value to bit position in 
<Rn>{,<shift>} immediate value; update Q fl ag if saturation takes place

STM{IA|DB}.W <Rn>{!}, <registers>  Write multiple register words to consecutive memory 
locations; increment after or decrement before

STR.W  <Rxf>, [<Rn>, #<offset_12>]  Write word to base register address � immediate 12-bit 
value offset

STR.W  <Rxf>, [<Rn>], Write word to base register address with immediate 8-bit 
 #+/-<offset_8> value offset, post-indexed
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Table A.2 (Continued)

Assembler Operation

STR.W  <Rxf>,  Write word to base register address with immediate 8-bit 
[<Rn>, #+/-<offset_8>]! value offset, pre-indexed

STR.W  <Rxf>,  Write word to base register address with shifted register 
[<Rn>,<Rm> {,LSL #<shift>}] value offset (shift range from 0 to 3)

STRB.W  <Rxf>,  Write byte to base register address � immediate 12-bit 
[<Rn>, #<offset_12>] value offset

STRB.W  <Rxf>,  Write byte to base register address with immediate 8-bit 
[<Rn>], #+/-<offset_8> value offset, post-indexed

STRB.W  <Rxf>,  Write byte to base register address with immediate 8-bit 
[<Rn>, #+/-<offset_8>]! value offset, pre-indexed

STRB.W  <Rxf>,  Write byte to base register address with shifted register 
[<Rn>,<Rm> {,LSL #<shift>}] value offset (shift range from 0 to 3)

STRD.W  <Rxf1>,<Rxf2>, Write double word to memory from base register address 
[<Rn>,#+/-<offset_8>*4] {!} �/� immediate offset, pre-indexed

STRD.W  <Rxf1>,<Rxf2>, Write double word to memory from base register address 
[<Rn>],#+/-<offset_8>*4 �/� immediate offset, post-indexed

STREX.W  <Rxf>,  Exclusive store word from base register address with 
[<Rn> {,#<offset_8>*4}]  immediate offset

STREXB.W <Rxf>,[<Rn>] Exclusive store byte from register address

STREXH.W <Rxf>,[<Rn>] Exclusive store half word from register address

STRH.W  <Rxf>,  Write half word to base register address � immediate 
[<Rn>, #<offset_12>] 12-bit value offset

STRH.W  <Rxf>,  Write half word to base register address with immediate 
[<Rn>], #+/-<offset_8> 8-bit value offset, post-indexed

STRH.W  <Rxf>,  Write half word to base register address with immediate 
[<Rn>, #+/-<offset_8>]! 8-bit value offset, pre-indexed

STRH.W  <Rxf>,  Write half word to base register address with shifted 
[<Rn>,<Rm> {,LSL #<shift>}] register value offset (shift range from 0 to 3)

STRT.W  <Rxf>, [<Rn>,#<offset_8>]  Word store with translation; in privileged mode, write to 
base register address with immediate offset and with user 
access level

STRBT.W  <Rxf>, [<Rn>,#<offset_8>]  Byte store with translation; in privileged mode, write to 
base register address with immediate offset and with user 
access level

STRHT.W  <Rxf>, [<Rn>,#<offset_8>]  Half word store with translation; in privileged mode, write 
to base register address with immediate offset and with 
user access level

(Continued)
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Assembler Operation

SUB{S}.W <Rd>,<Rn>, Subtract immediate value from register:
#<modify_constant(immed_12)>

 Rd = Rd - modify_constant(immed_12)

SUB{S}.W <Rd>,<Rn>,<Rm>{,<shift>} Subtract shifted register value from register:

 Rd = Rn + (Rm<<shift)

SUBW.W   <Rd>, <Rn>, #<immed_12> Subtract immediate 12-bit value from register:

 Rd = Rd - immed_12

SXTB.W  <Rd>, <Rm>, {, <rotation>}  Sign extend byte to 32 bits; Rd�sign_extend(byte(rotate_
right(Rm))), rotate can be 0–3 bytes

SXTH.W  <Rd>, <Rm>, {, <rotation>}  Sign extend halfword to 32 bits; 
Rd�sign_extend(hword(rotate_right(Rm))), rotate can 
be 0–3 bytes.

TBB.W   [<Rn>, <Rm>] Table branch byte

TBH.W   [<Rn>, <Rm>, LSL #1] Table branch half word

TEQ.W   <Rn>, Test equivalent between register and immediate value
#<modify_constant(immed_12)> +

TEQ.W   <Rn>,<Rm> {,<shift>}+ Test equivalent between register and shifted register

TST.W   <Rn>, Test register value for set bits by ANDing it with 
#<modify_constant(immed_12)> + immediate value

TST.W   <Rn>,<Rm> {,<shift>}+  Test register value for set bits by ANDing it with shifted 
register

UBFX.W  <Rd>, <Rn>,  Copy bit fi eld from register and zero extend to 32 bits
#<lsb>, #<width>

UDIV.W  <Rd>, <Rn>, <Rm> Unsigned divide:

 Rd = Rn/Rm

UMLAL.W  <RdLo>, <RdHi> ,  Multiply unsigned words and add unsigned extended 
<Rn>, <Rm> value to two-register value:

 {RdHi,RdLo} = (Rn*Rm)+{RdHi,RdLo}

UMULL.W  <RdLo>, <RdHi> ,  Multiply two unsigned register values:
<Rn>, <Rm>

 {RdHi,RdLo} = (Rn*Rm)

USAT.W  <Rd>, #<imm>,  Unsigned saturate shifted register value to bit position in 
<Rn>{,<shift>} immediate value

UXTB.W  <Rd>, <Rm>, {, <rotation>} Unsign extend byte to 32 bits; 
  Rd�unsign_extend(byte(rotate_right(Rm))), rotate can 

be 0–3 bytes.
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Assembler Operation

UXTH.W  <Rd>, <Rm>, {, <rotation>}  Unsign extend half word to 32 bits; 
Rd�unsign_extend(hword(rotate_right(Rm))), rotate 
can be 0–3 bytes.

WFE.W Wait for event

WFI.W Wait for interrupt
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16-Bit Thumb Instructions and
Architecture Versions

APPENDIX B

Most of the 16-bit Thumb instructions are available in architecture v4T (ARM7TDMI). 
However, a number of them are added in architecture v5, v6, and v7. Table B.1 lists these 
instructions.

Table B.1 Change of 16-bit Instruction Support in Various Recent ARM Architecture Versions

Instruction v4T v5 v6 Cortex-M3 (v7-M)

BKPT N Y Y Y

BLX N Y Y BLX �reg� only

CBZ, CBNZ N N N Y

CPS N N Y CPSIE �i/f�, CPSID �i/f�

CPY N N Y Y

NOP N N N Y

IT N N N Y

REV (various forms) N N Y REV, REV16, REVSH

SEV N N N Y

SETEND N N Y N

SWI Y Y Y Changed to SVC

SXTB, SXTH N N Y Y

UXTB, UXTH N N Y Y

WFE, WFI N N N Y
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APPENDIXCortex-M3 Exceptions 
Quick Reference

APPENDIX C

Exception Types and Enables

Table C.1 Quick Summary of Cortex-M3 Exception Types and Their Priority Confi gurations

Exception Type Name Priority (Level Address) Enable

1 Reset �3 Always

2 NMI �2 Always

3 Hard fault �1 Always

4 MemManage Programmable (0xE000ED18) NVIC SHCSR (0xE000ED24) 
bit[16]

5 BusFault Programmable (0xE000ED19) NVIC SHCSR (0xE000ED24) 
bit[17]

6 Usage fault Programmable (0xE000ED1A) NVIC SHCSR (0xE000ED24) 
bit[18]

7–10 – – –

11 SVC Programmable (0xE000ED1F) Always

12 Debug monitor Programmable (0xE000ED20) NVIC DEMCR (0xE000EDFC) 
bit[16]

13 – – –

14 PendSV Programmable (0xE000ED22) Always

15 SysTick Programmable (0xE000ED23) SYSTICK CTRLSTAT (0xE000E010) 
bit[1]

16–255 IRQ Programmable (0xE000E400) NVIC SETEN (0xE000E100)
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Stack Contents After Exception Stacking

Table C.2 Exception Stack Frame

Address Data Push Order

Old SP (N) -� (Previously pushed data) –

(N–4) PSR 2

(N–8) PC 1

(Nv12) LR 8

(N–16) R12 7

(N–20) R3 6

(N–24) R2 5

(N–28) R1 4

New SP (N–32) -� R0 3

Note: If double word stack alignment feature is used and the SP was not double 
word aligned when the exception occured, the stack frame top might begin 
at ((OLD_SP-4) AND OXFFFFFFF8), and the rest of the tabe moves one word 
down.
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NVIC Registers Quick Reference
APPENDIX D

Table D.1 Interrupt Controller Type Register (0xE000E004)

Bits Name Type Reset Value Description

4:0 INTLINESNUM R – Number of interrupt inputs in step of 32:

0 � 1 to 32

1 � 33 to 64

…

Table D.2 SYSTICK Control and Status Register (0xE000E010)

Bits Name Type Reset Value Descriptions

16 COUNTFLAG R 0 Read as 1 if counter reach 0 since last 
time this register is read. Clear to 0 
automatically when read or when current 
counter value is cleared.

2 CLKSOURCE R/W 0 0 � external reference clock (STCLK)

1 � use core clock

1 TICKINT R/W 0 1 � Enable SYSTICK interrupt generation 
when SYSTICK timer reaches 0

0 � Do not generate interrupt

0 ENABLE R/W 0 SYSTICK timer enable

Table D.3 SYSTICK Reload Value Register (0xE000E014)

Bits Name Type Reset Value Descriptions

23:0 RELOAD R/W 0 Reload value when timer reaches 0
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Table D.4 SYSTICK Current Value Register (0xE000E018)

Bits Name Type Reset Value Descriptions

23:0 CURRENT R/Wc 0 Read to return current value of the timer

Write to clear counter to 0; clearing of current 
value should also clear COUNTFLAG in 
SYSTICK Control and Status register

Table D.5 SYSTICK Calibration Value Register (0xE000E01C)

Bits Name Type Reset Value Description

31 NOREF R – 1 � No external reference clock (STCLK not 
available)

0 � External reference clock available

30 SKEW R – 1 � calibration value is not exactly 10 ms

0 �  calibration value is accurate

23:0 TENMS R/W 0 Calibration value for 10 ms. SoC designer 
should provide this value via Cortex-M3 input 
signals. If this value is read as 0, it means 
calibration value is not available.

Table D.6 External Interrupt SETEN Registers (0xE000E100–0xE000E11C)

Address Name Type Reset Value Description

0xE000E100 SETENA0 R/W 0 Enable for external interrupt #0–31

bit[0] for interrupt #0 

bit[1] for interrupt #1 

…

bit[31] for interrupt #31

0xE000E104 SETENA1 R/W 0 Enable for external interrupt #32–63

… – – – –

Table D.7 External Interrupt CLREN Registers (0xE000E180–0xE000E19C)

Address Name Type Reset Value Description

0xE000E180 CLRENA0 R/W 0 Clear Enable for external interrupt #0–31

bit[0] for interrupt #0

bit[1] for interrupt #1

…

bit[31] for interrupt #31

(Continued)
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Table D.7 (Continued)

Address Name Type Reset Value Description

0xE000E184 CLRENA1 R/W 0 Clear Enable for external interrupt 
#32–63

… – – – –

Table D.8 External Interrupt SETPEND Registers (0xE000E200–0xE000E21C)

Address Name Type Reset Value Description

0xE000E200 SETPEND0 R/W 0 Pending for external interrupt #0–31

bit[0] for interrupt #0

bit[1] for interrupt #1

…

bit[31] for interrupt #31

0xE000E204 SETPEND1 R/W 0 Pending for external interrupt #32–63

… – – – –

Table D.9 External Interrupt CLRPEND Registers (0xE000E280–0xE000E29C)

Address Name Type Reset Value Description

0xE000E280 CLRPEND0 R/W 0 Clear Pending for external interrupt #0–31

bit[0] for interrupt #0

bit[1] for interrupt #1

…

bit[31] for interrupt #31

0xE000E284 CLRPEND1 R/W 0 Clear Pending for external interrupt 
#32–63

… – – – –

Table D.10 External Interrupt ACTIVE Registers (0xE000E300–0xE000E31C)

Address Name Type Reset Value Description

0xE000E300 ACTIVE0 R 0 Active status for external interrupt #0–31

bit[0] for interrupt #0

bit[1] for interrupt #1

…

bit[31] for interrupt #31

0xE000E304 ACTIVE1 R 0 Active status for external interrupt 
#32–63

… – – – –

APP D-H8534.indd   335APP D-H8534.indd   335 7/19/07   1:27:51 PM7/19/07   1:27:51 PM



Appendix D

336

Table D.11 External Interrupt Priority-Level Register (0xE000E400–0xE000E4EF; 
Listed as Byte Addresses)

Address Name Type Reset Value Description

0xE000E400 PRI_0 R/W 0 Priority level external interrupt #0

0xE000E401 PRI_1 R/W 0 Priority level external interrupt #1

… – – – –

0xE000E41F PRI_31 R/W 0 Priority level external interrupt #31

… – – – –

Table D.12 CPU ID Base Register (Address 0xE000ED00)

Bits Name Type Reset Value Description

31:24 IMPLEMENTER R 0x41 Implementer code; ARM is 0x41

23:20 VARIANT R 0x0 / 0x1 Implementation defi ned variant number

19:16 Constant R 0xF Constant

15:4 PARTNO R 0xC23 Part number

3:0 REVISION R 0x0 / 0x1 Revision code

Table D.13 Interrupt Control and State Register (0xE000ED04)

Bits Name Type Reset Value Description

31 NMIPENDSET R/W 0 NMI pended

28 PENDSVSET R/W 0 Write 1 to pend system call; Read value 
indicates pending status

27 PENDSVCLR W 0 Write 1 to clear PendSV pending status

26 PENDSTSET R/W 0 Write 1 to pend Systick exception; Read 
value indicates pending status

25 PENDSTCLR W 0 Write 1 to clear Systick pending status

23 ISRPREEMPT R 0 Indicate that a pending interrupt is going 
to be active in next step (for debug)

22 ISRPENDING R 0 External interrupt pending (excluding 
system exceptions such as NMI for 
fault)

21:12 VECTPENDING R 0 Pending ISR number

11 RETTOBASE R 0 Set to 1 when the processor is running 
an exception handler and will return to 
thread level if interrupt return and no 
other exceptions pending

9:0 VECTACTIVE R 0 Current running interrupt service routine
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Table D.14 Vector Table Offset Register (Address 0xE000ED08)

Bits Name Type Reset Value Description

29 TBLBASE R/W 0 Table base in Code (0) or RAM (1)

28:7 TBLOFF R/W 0 Table offset value from Code region or 
RAM region

Table D.15 Application Interrupt and Reset Control Register (Address 0xE000ED0C)

Bits Name Type Reset Value Description

31:16 VECTKEY R/W – Access key; 0x05FA must be written 
to this fi eld to write to this register, 
otherwise the write will be ignored. The 
read-back value is 0xFA05.

15 ENDIANESS R – Indicates endianness for data: 1 for big 
endian (BE8) and 0 for little endian. This 
can only change after a reset.

10:8 PRIGROUP R/W 0 Priority Group.

2 SYSRESETREQ W – Request chip control logic to generate a 
reset.

1 VECTCLRACTIVE W – Clear all active state information for 
exceptions. Typically used in debugging or 
OS to allow the system to recover from a 
system error. (Reset is safer.)

0 VECTRESET W – Reset the Cortex-M3 (except debug 
logic), but this will not reset circuits 
outside the processor.

Table D.16 System Control Register (0xE000ED10)

Bits Name Type Reset Value Description

4 SEVONPEND R/W 0 Send Event on Pending. Wake up 
from WFE if a new interrupt is pended, 
regardless of whether the interrupt 
has priority higher than current 
level. 

3 Reserved – – –

2 SLEEPDEEP R/W 0 Enable SLEEPDEEP output signal when 
entering sleep mode.

1 SLEEPONEXIT R/W 0 Enable SleeponExit feature.

0 Reserved – – –
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Table D.17 Confi guration Control Register (0xE000ED14)

Bits Name Type Reset Value Description

9 STKALIGN R/W 0 Force exception-stacking start in double-
word aligned address.1

8 BFHFNMIGN R/W 0 Ignore data bus fault during hard fault 
and NMI handlers.

7:5 Reserved – – Reserved.

4 DIV_0_TRP R/W 0 Trap on divide by 0.

3 UNALIGN_TRP R/W 0 Trap on unaligned accesses.

2 Reserved – – Reserved.

1 USERSETMPEND R/W 0 If set to 1, allow user code to write to 
Software Trigger Interrupt register.

0 NONBASETHRDENA R/W 0 Nonbase thread enable. If set to 1, allows 
exception handler to return to thread state 
at any level by controlling return value.

1 Only available from revision 1 of the Cortex-M3. Revision 0 does not have this feature.

Table D.18 System Exceptions Priority-Level Register (0xE000ED18–0xE000ED23; 
Listed as Byte Addresses)

Address Name Type Reset Value Description

0xE000ED18 PRI_4 R/W 0 Priority level for memory management fault 

0xE000ED19 PRI_5 R/W 0 Priority level for bus fault 

0xE000ED1A PRI_6 R/W 0 Priority level for usage fault 

0xE000ED1B – – – –

0xE000ED1C – – – –

0xE000ED1D – – – –

0xE000ED1E – – – –

0xE000ED1F PRI_11 R/W 0 Priority level for SVC

0xE000ED20 PRI_12 R/W 0 Priority level for debug monitor

0xE000ED21 – – – –

0xE000ED22 PRI_14 R/W 0 Priority level for PendSV

0xE000ED23 PRI_15 R/W 0 Priority level for SYSTICK

Table D.19 System Handler Control and State Register (0xE000ED24)

Bits Name Type Reset Value Description

18 USGFAULTENA R/W 0 Usage fault handler enable

17 BUSFAULTENA R/W 0 Bus fault handler enable
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Table D.19 (Continued)

Bits Name Type Reset Value Description

16 MEMFAULTENA R/W 0 Memory management fault enable

15 SVCALLPENDED R/W 0 SVC pended; SVCall is started but was 
replaced by a higher priority exception

14 BUSFAULTPENDED R/W 0 Bus Fault pended; bus fault handler is 
started but was replaced by a higher-
priority exception

13 MEMFAULTPENDED R/W 0 Memory management fault pended; 
memory management fault started but 
was replaced by a higher-priority exception

12 USGFAULTPENDED R/W 0 Usage fault pended; usage fault started but 
was replaced by a higher-priority exception

11 SYSTICKACT R/W 0 Read as 1 if SYSTICK exception is active

10 PENDSVACT R/W 0 Read as 1 if PendSV exception is active

8 MONITORACT R/W 0 Read as 1 if debug monitor exception is 
active

7 SVCALLACT R/W 0 Read as 1 if SVCall exception is active

3 USGFAULTACT R/W 0 Read as 1 if usage fault exception is active

1 BUSFAULTACT R/W 0 Read as 1 if bus fault exception is active

0 MEMFAULTACT R/W 0 Read as 1 if memory management fault 
is active

Note: Bit 12 (USGFAULTPENDED) is not available on revision 0 of Cortex-M3.

Table D.20 Memory Management Fault Status Register (0xE000ED28; Byte Size)

Bits Name Type Reset Value Description

7 MMARVALID – 0 Indicate MMAR is valid

6:5 – – – –

4 MSTKERR R/Wc 0 Stacking error

3 MUNSTKERR R/Wc 0 Unstacking error

2 – – – –

1 DACCVIOL R/Wc 0 Data access violation

0 IACCVIOL R/Wc 0 Instruction access violation

Table D.21 Bus Fault Status Register (0xE000ED29; Byte Size)

Bits Name Type Reset Value Description

7 BFARVALID – 0 Indicate BFAR is valid

6:5 – – – –

(Continued)
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Table D.21 (Continued)

Bits Name Type Reset Value Description

4 STKERR R/Wc 0 Stacking error

3 UNSTKERR R/Wc 0 Unstacking error

2 IMPREISERR R/Wc 0 Imprecise data access violation

1 PRECISERR R/Wc 0 Precise data access violation

0 IBUSERR R/Wc 0 Instruction access violation

Table D.22 Usage Fault Status Register (0xE000ED2A; Half Word Size)

Bits Name Type Reset Value Description

9 DIVBYZERO R/Wc 0 Indicate divide by zero will take place 
(can only be set if DIV_0_TRP is set)

8 UNALIGNED R/Wc 0 Indicate unaligned access will take place 
(can only be set if UNALIGN_TRP is set)

7:4 – – – –

3 NOCP R/Wc 0 Attempt to execute a coprocessor 
instruction

2 INVPC R/Wc 0 Attempt to do exception with bad value 
in EXC_RETURN number

1 INVSTATE R/Wc 0 Attempt to switch to invalid state 
(e.g., ARM)

0 UNDEFINSTR R/Wc 0 Attempt to execute an undefi ned 
instruction

Table D.23 Hard Fault Status Register (0xE000ED2C)

Bits Name Type Reset Value Description

31 DEBUGEVT R/Wc 0 Indicate hard fault is triggered by debug 
event

30 FORCED R/Wc 0 Indicate hard fault is taken because of 
bus fault/memory management fault/
usage fault

29:2 – – – –

1 VECTBL R/Wc 0 Indicate hard fault is caused by failed 
vector fetch

0 – – – –

Table D.24 Debug Fault Status Register (0xE000ED30)

Bits Name Type Reset Value Description

4 EXTERNAL R/Wc 0 EDBGRQ signal asserted

3 VCATCH R/Wc 0 Vector fetch occurred
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Table D.24 (Continued)

Bits Name Type Reset Value Description

2 DWTTRAP R/Wc 0 DWT match occurred

1 BKPT R/Wc 0 BKPT instruction executed

0 HALTED R/Wc 0 Halt requested in NVIC

Table D.25 Memory Manage Address Register MMAR (0xE000ED34)

Bits Name Type Reset Value Description

31:0 MMAR R – Address that caused memory manage 
fault

Table D.26 Bus FaultManage Address Register BFAR (0xE000ED38)

Bits Name Type Reset Value Description

31:0 BFAR R – Address that caused bus fault

Table D.27 Auxiliary Fault Status Register (0xE000ED3C)

Bits Name Type Reset Value Description

31:0 Vendor controlled R/Wc 0 Vendor controlled (optional)

Table D.28 MPU Type Register (0xE000ED90)

Bits Name Type Reset Value Description

23:16 IREGION R 0 Number Instruction region; because ARM 
v7-M architecture uses a unifi ed MPU, 
this is always 0

15:8 DREGION R 0 or 8 Number of regions supported by this 
MPU

0 SEPARATE R 0 This is always 0 because the MPU is 
always unifi ed

Table D.29 MPU Control Register (0xE000ED94)

Bits Name Type Reset Value Description

2 PRIVDEFENA R/W 0 Privileged default memory map enable

1 HFNMIENA R/W 0 If set to 1, enable MPU during hard fault 
handler and NMI handler; otherwise, the 
MPU is not enabled for the hard fault 
handler and NMI

0 ENABLE R/W 0 Enable the MPU if set to 1
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Table D.30 MPU Region Number Register (0xE000ED98)

Bits Name Type Reset Value Description

7:0 REGION R/W – Select a region to be programmed

Table D.31 MPU Region Base Address Register (0xE000ED9C)

Bits Name Type Reset Value Description

31:N ADDR R/W – Base address of the region; N is 
dependent on the region size.

4 VALID R/W – If this is 1, the REGION defi ned in 
bit[3:0] will be used in this programming 
step; otherwise, the region selected by 
MPU Region Number register is used

3:0 REGION R/W – This fi eld overrides MPU Region Number 
register if VALID is 1; otherwise, this is 
ignored

Table D.32 MPU Region Base Attribute and Size Register (0xE000EDA0)

Bits Name Type Reset Value Description

31:29 Reserved – – –

28 XN R/W – Instruction access Disable (1�Disable)

27 Reserved – – –

26:24 AP R/W – Data Access Permission fi eld

23:22 Reserved – – –

21:19 TEX R/W – Type Extension fi eld 

18 S R/W – Shareable

17 C R/W – Cacheable

16 B R/W – Bufferable

15:8 SRD R/W – Subregion disable

7:6 Reserved – – –

5:1 REGION SIZE R/W – MPU Protection Region size

0 SZENABLE R/W – Region enable

Table D.33 MPU Alias Registers (0xE000EDA4–0xE000EDB8)

Address Name Description

0xE000EDA4 Alias of D9C MPU Alias 1 Region Base Address register

0xE000EDA8 Alias of DA0 MPU Alias 1 Region Attribute and Size register
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Table D.33 (Continued)

Address Name Description

0xE000EDAC Alias of D9C MPU Alias 2 Region Base Address register

0xE000EDB0 Alias of DA0 MPU Alias 2 Region Attribute and Size register

0xE000EDB4 Alias of D9C MPU Alias 3 Region Base Address register

0xE000EDB8 Alias of DA0 MPU Alias 3 Region Attribute and Size register

Table D.34 Debug Halting Control and Status Register (0xE000EDF0)

Bits Name Type Reset Value Description

31:16 KEY W – Debug key; value of 0xA05F must be 
written to this fi eld to write to this register, 
otherwise the write will be ignored

25 S_RESET_ST R – Core has been reset or is being reset; this 
bit is clear on read

24 S_RETIRE_ST R – Instruction is completed since last read; this 
bit is clear on read

19 S_LOCKUP R – When this bit is 1, the core is in locked 
state

18 S_SLEEP R – When this bit is 1, the core is in sleep mode

17 S_HALT R – When this bit is 1, the core is halted

16 S_REGRDY R – Register read/write operation is completed

15:6 Reserved – – Reserved

5 C_SNAPSTALL R/W – Use to break a stalled memory access

4 Reserved – – Reserved

3 C_MASKINTS R/W – Mask interrupts while stepping; can only be 
modifi ed when the processor is halted

2 C_STEP R/W – Single step the processor; valid only if 
C_DEBUGEN is set

1 C_HALT R/W – Halt the processor core; valid only if 
C_DEBUGEN is set

0 C_DEBUGEN R/W – Enable halt mode debug

Table D.35 Debug Core Register Selector Register (0xE000EDF4)

Bits Name Type Reset Value Description

16 REGWnR W – Direction of data transfer:

Write � 1, Read � 0

15:5 Reserved – – –

(Continued)
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Table D.35 (Continued)

Bits Name Type Reset Value Description

4:0 REGSEL W – Register to be accessed:

00000 � R0

00001 � R1

…

01111 � R15

10000 � xPSR/Flags

10001 � MSP (Main Stack Pointer)

10010 � PSP (Process Stack Pointer)

10100 � Special registers :

[31:24] Control

[23:16] FAULTMASK

[15:8] BASEPRI

[7:0] PRIMASK

Others values are reserved

Table D.36 Debug Core Register Data Register (0xE000EDF8)

Bits Name Type Reset Value Description

31:0 Data R/W – Data register to hold register read 
result or to write data into selected 
register

Table D.37 Debug Exception and Monitor Control Register (0xE000EDFC)

Bits Name Type Reset Value Description

24 TRCENA R/W 0 Trace system enable; to use DWT, 
ETM, ITM, and TPIU, this bit must be 
set to 1

23:20 Reserved – – Reserved

19 MON_REQ R/W 0 Indication that the debug monitor is 
caused by a manual pending request 
rather than hardware debug events

18 MON_STEP R/W 0 Single step the processor; valid only if 
MON_EN is set

17 MON_PEND R/W 0 Pend the monitor exception request; 
the core will enter a monitor exception 
when priority allowed
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Table D.37 (Continued)

Bits Name Type Reset Value Description

16 MON_EN R/W 0 Enable the debug monitor exception

15:11 Reserved – – Reserved

10 VC_HARDERR R/W 0 Debug trap on hard faults

9 VC_INTERR R/W 0 Debug trap on interrupt/exception 
service errors 

8 VC_BUSERR R/W 0 Debug trap on bus faults 

7 VC_STATERR R/W 0 Debug trap on usage fault state errors 

6 VC_CHKERR R/W 0 Debug trap on usage fault-enabled 
checking errors (e.g., unaligned, divide 
by zero)

5 VC_NOCPERR R/W 0 Debug trap on usage fault no 
coprocessor errors 

4 VC_MMERR R/W 0 Debug trap on memory management 
fault

3:1 Reserved – – Reserved

0 VC_CORERESET R/W 0 Debug trap on core reset

Table D.38 Software Trigger Interrupt Register (0xE000EF00)

Bits Name Type Reset Value Description

8:0 INTID W – Writing the interrupt number set the 
pending bit of the interrupt.

Table D.39 NVIC Peripheral ID Registers (0xE000EFD0–0xE000EFFC)

Address Name Type Reset Value Description

0xE000EFD0 PERIPHID4 R 0x04 Peripheral ID register

0xE000EFD4 PERIPHID5 R 0x00 Peripheral ID register

0xE000EFD8 PERIPHID6 R 0x00 Peripheral ID register

0xE000EFDC PERIPHID7 R 0x00 Peripheral ID register

0xE000EFE0 PERIPHID0 R 0x00 Peripheral ID register

0xE000EFE4 PERIPHID1 R 0xB0 Peripheral ID register

0xE000EFE8 PERIPHID2 R 0x0B/0x1B Peripheral ID register

0xE000EFEC PERIPHID3 R 0x00 Peripheral ID register

0xE000EFF0 PCELLID0 R 0x0D Component ID register

0xE000EFF4 PCELLID1 R 0xE0 Component ID register

0xE000EFF8 PCELLID2 R 0x05 Component ID register

0xE000EFFC PCELLID0 R 0xB1 Component ID register

Note: PERIPHID2 value is 0x0B for Cortex-M3 revision 0, 0x1B for revision 1.
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Cortex-M3 Troubleshooting Guide
APPENDIX E

Overview

One of the challenges of using the Cortex-M3 is to locate problems when the program goes 
wrong. The Cortex-M3 processor provides a number of fault status registers to assist in 
troubleshooting (see Table E.1).

Table E.1 Fault Status Registers on Cortex-M3

Address Register Full Name Size

0xE000ED28 MMSR MemManage Fault Status register Byte

0xE000ED29 BFSR Bus Fault Status register Byte

0xE000ED2A UFSR Usage Fault Status register Half word

0xE000ED2C HFSR Hard Fault Status register Word

0xE000ED30 DFSR Debug Fault Status register Word

0xE000ED3C AFSR Auxiliary Fault Status register Word

The MMSR, BFSR, and UFSR registers can be accessed in one go using a word transfer 
instruction. In this situation the combined fault status register is called the Confi gurable Fault 
Status Register (CFSR).

Another important piece of information is the stacked Program Counter (PC). This is located 
in memory address [SP � 0x24]. Since there are two stack pointers in the Cortex-M3, the fault 
handler might need to determine which stack pointer was used before obtaining the stacked PC.

In addition, for bus faults and memory management faults, you might also able to 
determine the address that caused the fault. This is done by accessing the MemManage 
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(Memory Management) Fault Address Register (MMAR) and the Bus Fault Address Register 
(BFAR). The contents of these two registers are only valid when the MMAVALID bit (in 
MMSR) or BFARVALID bit (in BFSR) is set. The MMAR and BFAR are physically the same 
register, so only one of them can be valid at a time (see Table E.2).

0xE000ED28

0xE000ED2C

0xE000ED30

0xE000ED3C

UFSR BFSR MFSR

HFSR

DFSR

AFSR

0781516Bit31

Figure E.1 Accessing Fault Status Registers

Table E.2 Fault Address Registers on Cortex-M3

Address Register Full Name Size

0xE000ED34 MMAR MemManage Fault Address register Word

0xE000ED38 BFAR Bus Fault Address register Word

Finally, the Link Register (LR) value when entering the fault handler might also provide hints 
about the cause of the fault. In the case of faults caused by invalid EXC_RETURN value, the 
value of LR when the fault handler is entered shows the previous LR value when the fault 
occured. Fault handler can report the faulty LR value, and software programmers can then use 
this information to check why the LR ends up with an illegal return value.

Developing Fault Handlers

In most cases, fault handlers for development and for real running systems differ from one 
another. For software development, the fault handler should focus on reporting the type of 
error, whereas the fault handler for running systems will likely focus on system recovery 
actions. Here we cover only the fault reporting because system recovery actions highly 
depend on design type and requirements.

In complex software, instead of outputting the results inside the fault handler, the contents of 
these registers can be copied to a memory block and then you can use PendSV to report the 
fault details later. This avoids potential faults in display or outputting routines causing lockup. 
For simple applications this might not matter, and the fault details can be output directly 
within the fault handler routine.
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Report Fault Status Registers

The most basic step of a fault handler is to report the fault status register values. These 
include:

• UFSR

• BFSR

• MMSR

• HFSR

• DFSR

• AFSR (optional)

Report Stacked PC

The step for getting the stacked PC is similar to the SVC example in this book.

Determine which stack
was used in calling

process using the LR
value (bit[2])

Stack was
done using MSP

Stacking was
done using PSP

Get stacked PC from
stack memory

Bit 2 � 0 Bit 2 � 1

Figure E.2 Getting the Value of a Stacked PC from Stack Memory

This process can be carried out in assembly language as:

TST    LR, #0x4    ; Test EXC_RETURN number in LR bit 2
ITTEE  EQ          ; if zero (equal) then
MRSEQ  R0, MSP     ; Main Stack was used, put MSP in R0
LDREQ  R0,[R0,#24] ; Get stacked PC from stack.
MRSNE  R0, PSP     ; else, Process Stack was used, put PSP in R0
LDRNE  R0,[R0,#24] ; Get stacked PC from stack.

To help with debugging, we should also create a disassembled code list fi le so that we can 
locate the problem easily.
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Read Fault Address Register

The fault address register can be erased after the MMARVALID or BFARVALID is 
cleared. To correctly access the fault address register, the following procedure should be 
used:

1. Read BFAR/MMAR.

2. Read BFARVALID/MMARVALID. If it is zero, the BFAR/MMAR read should be 
discarded.

3. Clear BFARVALID/MMARVALID.

The reason for this procedure instead of reading valid bits fi rst is to prevent a fault handler 
being preempted by another higher-priority fault handler after the valid bit is read, which 
could lead to the following erroneous fault-reporting sequence:

1. Read BFARVALID/MMARVALID.

2. Valid bit is set, going to read BFAR/MMAR.

3. Higher-priority exception preempts existing fault handler, which generates another fault, 
causing another fault handler to be executed.

4. The higher-priority fault handler clears the BFARVALID/MMARVALID bit, causing the 
BFAR/MMAR to be erased.

5. After returning to the original fault handler, the BFAR/MMAR is read, but now the 
content is invalid and leads to incorrect reporting of the fault address.

Therefore it is important to read the BFARVALID/MMARVALID after reading the Fault 
Address register to ensure that the address register content is valid.

Clear Fault Status Bits

After the fault reporting is done, the fault status bit in the FSR should be cleared so that next 
time the fault handler is executed, the previous faults will not confuse the fault handler. In 
addition, if the fault address valid bit is not clear, the fault address register will not get an 
update for the next fault.

Others

It is often necessary to save the contents of LR in the beginning of a fault handler. However, 
if the fault is caused by a stack error, pushing the LR to stack might just make things worst. 
As we know, R0–R3 and R12 should already been saved, so we could copy LR to one of these 
registers before doing any function calls.
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Understanding the Cause of the Fault

After obtaining the information we need, we can establish the cause of the problem. Tables 
E.3–E.7 list some of the common reasons that faults occur.

Table E.3 MemManage Fault Status Register

Bit Possible Causes

MSTKERR Error occurred during stacking (starting of exception):
 1) Stack pointer is corrupted.
 2)  Stack size goes too large, reaching a region not defi ned by the MPU or disallowed 

in the MPU confi guration. 

MUNSTKERR  Error occurred during unstacking (ending of exception). If there was no error stacking 
but the error occurred during unstacking, it might be:

 1.  Stack pointer was corrupted during exception.
 2.  MPU confi guration changed by exception handler.

DACCVIOL  Violation to memory access protection, which is defi ned by MPU setup. For example, 
user application trying to access privileged-only region.

IACCVIOL 1.  Violation to memory access protection, which is defi ned by MPU setup. For 
example, user application trying to access privileged-only region. Stacked PC might 
be able to locate the code that has caused the problem.

 2. Branch to nonexecutable regions.
 3. Invalid exception return code.
 4.  Invalid entry in exception vector table. For example, loading of an executable 

image for traditional ARM core into the memory, or exception occurred before 
vector table is set.

 5. Stacked PC corrupted during exception handling.

Table E.4 Bus Fault Status Register

Bit Possible Causes

STKERR Error occurred during stacking (starting of exception):
 1. Stack pointer is corrupted.
 2. Stack size goes too large, reaching an undefi ned memory region.
 3. PSP is used but not initialized.

UNSTKERR  Error occurred during unstacking (ending of exception). If there was no error 
stacking but error occurred during unstacking, it might be that the stack pointer was 
corrupted during exception.

IMPREISERR  Bus error during data access; could be caused by a device not having been initialized, 
access of privileged-only device in user mode, or the transfer size is incorrect for the 
specifi c device.

(Continued)
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Table E.5 Usage Fault Status Register

Bit Possible Causes

DIVBYZERO  Divide by zero takes place and DIV_0_TRP is set. The code causing the fault can be 
located using stacked PC.

UNALIGNED  Unaligned access attempted with UNALIGN_TRP is set. The code causing the fault 
can be located using stacked PC.

NOCP  Attempt to execute a coprocessor instruction. The code causing the fault can be 
located using stacked PC.

INVPC 1. Invalid value in EXC_RETURN number during exception return. For example:
    ● Return to thread with EXC_RETURN � 0xFFFFFFF1
    ● Return to handler with EXC_RETURN � 0xFFFFFFF9
      To investigate the problem, the current LR value provides the value of LR at the 

failing exception return.

 2.  Invalid exception active status. For example:
    ●  Exception return with exception active bit for the current exception already 

cleared. Possibly caused by use of VECTCLRACTIVE or clearing of exception 
active status in NVIC SHCSR.

    ●  Exception return to thread with one (or more) exception active bit still active.

 3.  Stack corruption causing the stacked IPSR to be incorrect. For an INVPC fault, the 
Stacked PC shows the point where the faulting exception interrupted the main/
preempted program. To investigate the cause of the problem, it is best to use the 
exception trace feature in ITM.

 4.  ICI/IT bit invalid for current instruction. This can happen when a multiple-load/
store instruction gets interrupted and, during the interrupt handler, the stacked PC 
is modifi ed. When the interrupt return takes place, the nonzero ICI bit is applied 
to an instruction that does not use ICI bits. The same problem can also happen 
due to corruption of stacked PSR.

Bit Possible Causes

PRECISERR  Bus error during data access. The fault address may be indicated by BFAR. A bus 
error could be caused by a device not having been initialized, access of privileged-only 
device in user mode, or the transfer size is incorrect for the specifi c device.

IBUSERR 1.  Violation to memory access protection, which is defi ned by MPU setup. For 
example, user application trying to branch to privileged-only region.

 2. Branch to nonexecutable regions.
 3. Invalid exception return code.
 4.  Invalid entry in exception vector table. For example, loading an executable image 

for traditional ARM core into the memory, or exception occurred before vector 
table is set.

 5. Stacked PC corrupted during exception handling.

Table E.4 (Continued)
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Table E.6 Hard Fault Status Register

Bit Possible Causes

DEBUGEVF Fault is caused by debug event:
 1. Breakpoint/watchpoint events.
 2.  If the hard fault handler is executing, it might be caused by execution of BKPT 

without enable monitor handler (MON_EN�0) and halt debug not enabled 
(C_DEBUGEN�0). By default some C compilers might include semihosting code 
that use BKPT.

FORCED 1.  Trying to run SVC/BKPT within SVC/monitor or another handler with same or 
higher priority.

 2.  A fault occurred, but its corresponding handler is disabled or cannot be started 
because another exception with same or higher priority is running or because 
exception mask is set.

VECTBL Vector fetch failed. Could be caused by:
 1. Bus fault at vector fetch
 2. Incorrect vector table offset setup

Table E.7 Debug Fault Status Register

Bit Possible Causes

EXTERNAL EDBGRQ signal has been asserted.

VCATCH Vector catch event has occurred.

DWTTRAP DWT watchpoint event has occurred.

BKPT 1. Breakpoint instruction is executed.
 2. FPB unit generated a breakpoint event.

(Continued)

Bit Possible Causes

INVSTATE 1.  Loading branch target address to PC with LSB equals zero. Stacked PC should 
show the branch target.

 2.  LSB of vector address in vector table is zero. Stacked PC should show the starting 
of exception handler.

 3.  Stacked PSR corrupted during exception handling, so after the exception the core 
tries to return to the interrupted code in ARM state.

UNDEFINSTR 1. Use of instructions not supported in the Cortex-M3.
 2. Bad/corrupted memory contents.
 3. Loading of ARM object code during link stage. Check compile steps.
 4.  Instruction align problem. For example, if the GNU tool chain is used, omitting of 

.align after .ascii might cause the next instruction to be unaligned (to start in an 
odd memory address instead of half word addresses).

Table E.5 (Continued)
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Other Possible Problems

A number of other common problems are in Table E.8.

Table E.8 Other Possible Problems

Situation Possible Causes

No program execution Vector table could be set up incorrectly:
 ● Located in incorrect memory location.
 ● LSB of vectors (including hard fault handler) is not set to 1.
 ●  Use of branch instruction (as in vector table in traditional ARM processor) in 

the vector table.
  Generate a disassembly code listing to check whether the vector table is set up 

correctly.

Program crashes after a Possibly caused by incorrect endian setting or incorrect stack pointer setup
few instructions  (check vector table) or use of C object library for traditional ARM processor 

(ARM code instead of Thumb code). The offending C object library code could 
be part of the C startup routine. Check compiler and linker options to ensure 
that Thumb or Thumb-2 library fi les are used.

Bit Possible Causes

  In some cases BKPT instructions are inserted by C startup code as part of the 
semihosting debugging setup. This should be removed for a real application code. 
Refer to your compiler document for details.

HALTED Halt request in NVIC.

Table E.7 (Continued)
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fl ags, 69
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Reset
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